How Do You Calculate $ab+bc+ca$ Using Trigonometric Identities?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
Click For Summary
SUMMARY

The problem of calculating \( ab + bc + ca \) where \( a = \tan 15^{\circ} \), \( b = \tan 25^{\circ} \), and \( c = \tan 50^{\circ} \) was discussed in the forum. The correct solutions were provided by members kaliprasad, greg1313, and lfdahl, showcasing various approaches using trigonometric identities. The discussion emphasizes the importance of understanding tangent addition formulas and their applications in solving polynomial expressions involving trigonometric functions.

PREREQUISITES
  • Understanding of trigonometric identities, specifically tangent addition formulas.
  • Familiarity with the properties of tangent functions.
  • Basic algebraic manipulation skills for polynomial expressions.
  • Knowledge of angle measures in degrees.
NEXT STEPS
  • Study the tangent addition formula and its derivations.
  • Explore the relationship between tangent and sine/cosine functions.
  • Practice solving polynomial expressions involving trigonometric functions.
  • Learn about the unit circle and its application in trigonometry.
USEFUL FOR

Students, educators, and mathematics enthusiasts interested in advanced trigonometric problem-solving techniques and applications of identities in algebraic expressions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Compute $ab+bc+ca$ if $a=\tan 15^{\circ},\,b=\tan 25^{\circ},\,c=\tan 50^{\circ}$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution:):

1. kaliprasad
2. greg1313
3. lfdahl

Solution from kaliprasad:
We have $\tan (A+B+C) =\dfrac{\tan\, A + \tan\, B +\tan\, C - \tan\, A \tan\, B \tan C }{1-\tan\, A \tan\, B - \tan\, B \tan\, C - \tan\, C \tan A } $

If $(A+B+C) = 90^\circ$ then $\tan (A + B + C) = \infty$

So denominator shall be zero

$1-\tan\, A \tan\, B - \tan\, B \tan\, C - \tan\, C \tan A = 0 $

or $\tan\, A \tan\, B + \tan\, B \tan\, C + \tan\, C \tan A = 1 $

as $15 + 25 + 50 = 90$

Therefore $\tan\, 15^\circ \tan\, 25^\circ + \tan\, 25^\circ \tan\, 50^\circ + \tan\, 50^\circ \tan 15^\circ = 1 $

given $a=\tan\,15^\circ$ , $b=\tan\,25^\circ$, $c=\tan\,50^\circ$

we get

$ab+bc+ca = 1$

Solution from greg1313:
$$q=ab+bc+ac$$

$$2q=\tan15^\circ(\tan25^\circ+\tan50^\circ)+\tan25^\circ(\tan15^\circ+\tan50^\circ)+\tan50^\circ(\tan15^\circ+\tan25^\circ)$$

$$\tan15^\circ(\tan25^\circ+\tan50^\circ)=\tan15^\circ\left(\dfrac{\sin25^\circ\cos50^\circ+\sin50^\circ\cos25^\circ}{\cos25^\circ\cos50^\circ}\right)=\dfrac{\sin15^\circ}{\cos25^\circ\cos50^\circ}=\dfrac{\cos75^\circ}{\cos25^\circ\cos50^\circ}$$

and similarly for the other two terms. Hence

$$2q=\dfrac{\cos75^\circ}{\cos25^\circ\cos50^\circ}+\dfrac{\cos65^\circ}{\cos15^\circ\cos50^\circ}+\dfrac{\cos40^\circ}{\cos15^\circ\cos25^\circ}.$$

Now,

$$\dfrac{\cos75^\circ}{\cos25^\circ\cos50^\circ}=\dfrac{\cos25^\circ\cos50^\circ-\sin25^\circ\sin50^\circ}{\cos25^\circ\cos50^\circ}$$

and similarly for the other two terms. Hence

$$2q=3-q\Rightarrow q= 1$$

so we may state $$ab+bc+ac=1.$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K