MHB How Do You Calculate $ab+bc+ca$ Using Trigonometric Identities?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
AI Thread Summary
To compute $ab + bc + ca$ where $a = \tan 15^{\circ}$, $b = \tan 25^{\circ}$, and $c = \tan 50^{\circ}$, participants discussed using trigonometric identities to simplify the expression. The solutions provided by members kaliprasad and greg1313 involved applying the tangent addition formulas and properties of angles. The calculations reveal that the sum can be expressed in terms of known values of tangent at specific angles. The discussion emphasizes the importance of understanding trigonometric relationships in solving such problems. Overall, the thread showcases collaborative problem-solving in trigonometry.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Compute $ab+bc+ca$ if $a=\tan 15^{\circ},\,b=\tan 25^{\circ},\,c=\tan 50^{\circ}$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution:):

1. kaliprasad
2. greg1313
3. lfdahl

Solution from kaliprasad:
We have $\tan (A+B+C) =\dfrac{\tan\, A + \tan\, B +\tan\, C - \tan\, A \tan\, B \tan C }{1-\tan\, A \tan\, B - \tan\, B \tan\, C - \tan\, C \tan A } $

If $(A+B+C) = 90^\circ$ then $\tan (A + B + C) = \infty$

So denominator shall be zero

$1-\tan\, A \tan\, B - \tan\, B \tan\, C - \tan\, C \tan A = 0 $

or $\tan\, A \tan\, B + \tan\, B \tan\, C + \tan\, C \tan A = 1 $

as $15 + 25 + 50 = 90$

Therefore $\tan\, 15^\circ \tan\, 25^\circ + \tan\, 25^\circ \tan\, 50^\circ + \tan\, 50^\circ \tan 15^\circ = 1 $

given $a=\tan\,15^\circ$ , $b=\tan\,25^\circ$, $c=\tan\,50^\circ$

we get

$ab+bc+ca = 1$

Solution from greg1313:
$$q=ab+bc+ac$$

$$2q=\tan15^\circ(\tan25^\circ+\tan50^\circ)+\tan25^\circ(\tan15^\circ+\tan50^\circ)+\tan50^\circ(\tan15^\circ+\tan25^\circ)$$

$$\tan15^\circ(\tan25^\circ+\tan50^\circ)=\tan15^\circ\left(\dfrac{\sin25^\circ\cos50^\circ+\sin50^\circ\cos25^\circ}{\cos25^\circ\cos50^\circ}\right)=\dfrac{\sin15^\circ}{\cos25^\circ\cos50^\circ}=\dfrac{\cos75^\circ}{\cos25^\circ\cos50^\circ}$$

and similarly for the other two terms. Hence

$$2q=\dfrac{\cos75^\circ}{\cos25^\circ\cos50^\circ}+\dfrac{\cos65^\circ}{\cos15^\circ\cos50^\circ}+\dfrac{\cos40^\circ}{\cos15^\circ\cos25^\circ}.$$

Now,

$$\dfrac{\cos75^\circ}{\cos25^\circ\cos50^\circ}=\dfrac{\cos25^\circ\cos50^\circ-\sin25^\circ\sin50^\circ}{\cos25^\circ\cos50^\circ}$$

and similarly for the other two terms. Hence

$$2q=3-q\Rightarrow q= 1$$

so we may state $$ab+bc+ac=1.$$
 
Back
Top