How do you determine the total error in a measurement of flow rate?

  • Context: Undergrad 
  • Thread starter Thread starter Topher925
  • Start date Start date
  • Tags Tags
    Error Measurement
Click For Summary
SUMMARY

This discussion focuses on determining the total error in flow rate measurements, specifically using the formula Error = Ev*dQ/dv + Et*dQ/dt, where Q represents flow rate, Ev is the maximum error from volume measurement, and Et is the maximum error from time measurement. Participants clarified that errors in independent quantities should be summed in quadrature, leading to the formula δq = √((∂q/∂x)²(δx)² + (∂q/∂y)²(δy)² + ...). John Taylor's book "An Introduction to Error Analysis" is recommended for further understanding of error estimation, which can be complex and often lacks a single correct approach.

PREREQUISITES
  • Understanding of flow rate calculations (Flow rate = Volume / Time)
  • Familiarity with partial derivatives in calculus
  • Knowledge of error propagation techniques
  • Basic principles of Gaussian distribution in measurements
NEXT STEPS
  • Study "An Introduction to Error Analysis" by John Taylor for comprehensive insights on error estimation.
  • Learn about error propagation methods, specifically the root-sum-square (RSS) technique.
  • Explore Monte Carlo simulations for advanced error analysis applications.
  • Review the Guide for Measurement Uncertainty (GUM) for standardized approaches to measurement uncertainty.
USEFUL FOR

Researchers, engineers, and students involved in experimental physics, engineering measurements, and anyone interested in mastering error analysis techniques.

Topher925
Messages
1,562
Reaction score
7
I have a question that has been bugging me lately. How is it that you determine the total error of a measurement?

For example, if we are trying to measure the flow rate of water coming out of a hose. We let the water flowing through the hose fill a graduated cylinder and measure the time it takes to do it. So we would have:

Flow rate = Volume / Time

However let's say that we need to know the error of this measurement. Would we say that the total error is:

Error = Ev*dQ/dv + Et*dQ/dt (d's are partial derivatives)

Where,
Q = function for flow rate
Ev = max error from volume measurement
Et = max error of time measurement
Error = total error

So the formula would ultimately be:

Error = Et*-V/t^2 + Ev*1/t

Would this be correct? Haven't done this in a while and its just not making sense to me?
 
Last edited:
Physics news on Phys.org
I think you take the *partial* derivatives of the function wrt each variable, and multiply each pd by the error, then sum them up.

So in your example where F = V/t

you have err = ev d(V/t)/dV + et d(V/t)/dt (where these d's are partials)

You have to be careful to keep track of the units, sometimes errors are given as percent of scale and sometimes in absolute units.
 
gmax137 said:
I think you take the *partial* derivatives of the function wrt each variable, and multiply each pd by the error, then sum them up.

Thanks for the reply. Thats what I meant to say, I should probably correct that. I always get confused about this formula for some reason it just doesn't make much "physical" sense to me.
 
The physical meaning is this - the partial derivative of f(x,y) wrt x is how much f changes for a given change in x. Now consider ex, the error in x, as that "given change in x". Then the change in f for the change in x is ex times partial of f wrt x.
 
Topher925 said:
I have a question that has been bugging me lately. How is it that you determine the total error of a measurement?

<snip>

John Taylor has written an excellent book "An Introduction to Error Analysis", and it's worth reading.

Under most conditions- errors in one quantity (say cylinder radius) are independent of errors in another quantity (say time to fill)- then the different errors add in quadrature. Another importnat assumption is that repeated measurements form a Gaussian distribution. Then, given a function of several variables q=F(x,y,v,...t) then:

\delta q = \sqrt{(\frac{\partial q}{\partial x} \delta x)^{2}+(\frac{\partial q}{\partial y} \delta y)^{2}+(\frac{\partial q}{\partial v} \delta v)^{2}+...(\frac{\partial q}{\partial t} \delta t)^{2}}

or variants thereof. The formula your wrote is also true, but it's an extremum value.
 
sorry for any confusion - you are quite right about summing inquadrature (a.k.a, root-sum-square or RSS). This is probably where the OP has trouble with the "physical meaning." I remember when I was trying to get to understand the meaning of the RSS formula, I found Taylor's book and it helped me out. Now that was a few years ago and I can't remember how he explained it...And my copy of the book is not at hand...
 
Error estimation is very tricky and there are often no single "correct" estimate. Nowadays Monte Carlo calculations are used in more advanced applications but even then there are problems; mainly related to how we interpret probability (i.e. what does the limits actually mean).
From what I understand even GUM* is a bit messy in that regard, mixing Baysian and functionalistic approaches.

*GUM=Guide for measurement uncertainty, a publication from ISO, IEC and a few other standardization organizations.
 
I believe your equation for the error is correct, apart from absolute values!

I think it's supposed to be:

dQ = \left| \frac{\partial Q}{\partial V} \right| \, dV + \left| \frac{\partial Q}{\partial t} \right| \, dt = \frac{1}{t} \, dV + \frac{V}{t^2} \, dt
(Assuming t and V are both always positive as would be the obvious case with time and volume)

Note the + V/t^2..! It doesn't make sense to have your error become less (or even negative!) if some partial derivative happens to be negative...
 
Thanks for all the replies. I am now a little more knowledgeable about error analysis. I'll try to get to that book someday but right now I just don't have the time due to other books that I have to read.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
13
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
20
Views
6K
  • · Replies 5 ·
Replies
5
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K