MHB How Do You Solve $\cot x \cdot \cot(x+y)$ Given $\cos y = 17\cos(2x+y)$?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
AI Thread Summary
To solve the equation $\cot x \cdot \cot(x+y)$ given $\cos y = 17\cos(2x+y)$, the discussion highlights two successful solutions provided by members greg1313 and kaliprasad. Both solutions explore trigonometric identities and relationships to derive the result. The problem emphasizes the importance of understanding the interplay between cotangent and cosine functions. The discussion encourages engagement with the Problem of the Week format for further learning. Overall, the thread showcases effective problem-solving strategies in trigonometry.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Evaluate $\cot x \cdot \cot(x+y)$ , if $\cos y = 17\cos(2x+y)$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution:

1. greg1313
2. kaliprasad

Solution from greg1313:
$$\cos y=17\cos(2x+y)$$

$$\cos y=17(\cos2x\cos y-\sin2x\sin y)$$

$$1=17(\cos2x-\sin2x\tan y)$$

$$\tan y=\dfrac{17\cos2x-1}{17\sin2x}$$

$$\cot x\cdot\cot(x+y)=\cot x\cdot\dfrac{1-\tan x\tan y}{\tan x+\tan y}=\dfrac{\cot x-\dfrac{17\cos2x-1}{17\sin2x}}{\tan x+\dfrac{17\cos2x-1}{17\sin2x}}$$

$$=\dfrac{\dfrac{17\sin2x\cos x-17\cos2x\sin x+\sin x}{17\sin2x\sin x}}{\dfrac{17\sin2x\sin x+17\cos2x\cos x-\cos x}{17\sin2x\cos x}}$$

$$=\dfrac{\dfrac{18}{17\sin2x}}{\dfrac{16}{17\sin2x}}=\dfrac98$$

Alternate solution from kaliprasad:
We have $\dfrac{\cos\,y}{\cos(2x+y)} = \dfrac{17}{1}$
using componendo dividendo we get
$\dfrac{\cos\,y+ \cos(2x+y)}{\cos\,y- \cos(2x+y)} = \dfrac{17+1}{17-1}$
or $\dfrac{ 2 \cos(x+y) \cdot \cos\,x}{2\sin(x+y)\cdot \sin\,x} = \dfrac{18}{16}=\dfrac{9}{8} $
or $\cot(x+y)\cdot \cot\,x= \dfrac{9}{8} $
 
Back
Top