I How Does Quantum Negativity Vary with Partial Transposes in Bipartite Systems?

  • I
  • Thread starter Thread starter Jufa
  • Start date Start date
  • Tags Tags
    Quantum
Jufa
Messages
101
Reaction score
15
TL;DR Summary
I am struggling with this concept mainly for two reasons: it is non-symmetric and I find it difficult to encounter a proper definition for mixed states.
Let as consider a system ##H = A\otimes B##

I've been said that quantum negativity, i.e. taking the partial transpose w.r.t A or B and summing the magnitude of the negative eigenvalues obtained, is a measure of how entangled are the parties A and B.
First question:
Why is it that we do not always obtain the same negativity regardless of the system from which we take the partial transpose? After all the negativity tells how entangled is the bipartite system, so intuitively one can expect something like##N(\rho^A)=N(\rho^B)##. Nevertheless it is not difficult to fins some examples where this equality does not hold
Second question:
How do we define the negativity for mixed states? As other entanglement measures, I understand that the negativity of a bipartite state is the lower that can be found out of any of the possible collectivities may produce our mixed state but, again, from which system do we take the partial trace?

Thanks in advance
 
Physics news on Phys.org
.For the first question, it is important to note that the partial transpose of a bipartite state with respect to one of the systems (say system A) may not be the same as the partial transpose of the same state with respect to the other system (say system B). This is because the partial transpose operation is not commutative; in other words, the partial transpose of a state ##\rho## w.r.t. system A is not necessarily equal to the partial transpose of the same state w.r.t. system B. For the second question, the negativity of a mixed state is defined as the sum of the absolute values of the negative eigenvalues of the partial transpose with respect to either system A or B (whichever yields the lowest value). This is because the partial transpose operation is not commutative, so it is possible that taking the partial transpose of a mixed state with respect to one system (say system A) may yield different results than taking the partial transpose of the same state with respect to the other system (say system B). In such cases, the lower value should be used to calculate the negativity.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...

Similar threads

Back
Top