MHB How Does the Euler Circuit Algorithm Solve Mazes?

  • Thread starter Thread starter annie122
  • Start date Start date
  • Tags Tags
    Circuits Euler
Click For Summary
The Euler Circuit Algorithm for solving mazes involves specific rules for traversing edges, particularly emphasizing that from a new vertex any edge can be taken, while from an old vertex, the last edge traversed must be retraced if it was the only option. A key point of confusion arises around the rule that states no edge should be used more than twice, leading to questions about whether using an edge three or more times is permissible. The algorithm constructs a walk that forms an Euler circuit by effectively doubling each edge in the original maze, which is crucial for ensuring all paths are covered without repetition. Clarification is sought on the algorithm's name and the exact textbook reference for better understanding. The discussion highlights the need for clearer explanations of how the algorithm effectively solves maze problems.
annie122
Messages
51
Reaction score
0
I didn't understand the algorithm explained in my textbook. ("Introduction to combinatorics" P.165)

I would an alternative explanation with an example.

Here is the algorithm:

(i) from a new vertex, any edge may be taken;

(ii) from an old vertex, if the edge just traversed was nes, then turn around retake it;

(iii) never use any edge three times.

I used the algorithm in one maze, but at one point it became inevitable for me to take the edge for the third time.
A question regarding (iii); does it disallow me from taking the edge more than three times, or is it okay to take an edge, say, four times?

Also, I don't understand how this works. It was explained that the walk constructed in this way is an Euler circuit in the network formed by doubling each edge in the original. How does this lead to solving the maze?
 
Physics news on Phys.org
Yuuki said:
I didn't understand the algorithm explained in my textbook. ("Introduction to combinatorics" P.165)

Hi Yuuki, :)

Can you please provide the exact title and the author of your book. Also what is the name of the algorithm used to find Eularian Circuits?
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 4 ·
Replies
4
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
Replies
5
Views
2K
Replies
3
Views
1K