How Is the Infinite Product of a Recurrence Sequence Solved?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
SUMMARY

The infinite product of the recurrence sequence defined by \( a_0 = \frac{5}{2} \) and \( a_k = a_{k-1}^2 - 2 \) for \( k \geq 1 \) converges to \( \frac{3}{7} \). This result is derived using the identity \( (x + x^{-1})^2 - 2 = x^2 + x^{-2} \) and involves telescoping the product through specific algebraic manipulations. The solution is attributed to Kiran Kedlaya and associates, and it confirms the absolute convergence of the product.

PREREQUISITES
  • Understanding of recurrence relations and their convergence
  • Familiarity with infinite products in mathematical analysis
  • Knowledge of algebraic identities and manipulations
  • Experience with induction proofs in mathematics
NEXT STEPS
  • Study the properties of recurrence sequences and their applications
  • Learn about infinite products and their convergence criteria
  • Explore algebraic identities relevant to telescoping series
  • Review induction techniques in mathematical proofs
USEFUL FOR

Mathematicians, students studying advanced calculus, and anyone interested in the analysis of recurrence sequences and infinite products.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Let $a_0 = \dfrac52$ and $a_k = a_{k-1}^2 - 2$ for $k \geq 1$. Compute $\displaystyle\prod_{k=0}^\infty \left(1 - \frac{1}{a_k} \right)$ in closed form.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's POTW, which was Problem A-3 in the 2014 Putnam Archives. The solution, attributed to Kiran Kedlaya and associates, follows.

[sp]
Using the identity
\[
(x + x^{-1})^2 - 2 = x^2 + x^{-2},
\]
we may check by induction on $k$ that $a_k = 2^{2^k} + 2^{-2^k}$; in particular, the product is absolutely convergent. Using the identities
\begin{align*}
\frac{x^2 + 1 + x^{-2}}{x + 1 + x^{-1}} &= x - 1 + x^{-1}, \\
\frac{x^2 - x^{-2}}{x - x^{-1}} &= x + x^{-1},
\end{align*}
we may telescope the product to obtain
\begin{align*}
\prod_{k=0}^\infty \left( 1 - \frac{1}{a_k} \right)
&= \prod_{k=0}^\infty \frac{2^{2^k} - 1 + 2^{-2^k}}{2^{2^k} + 2^{-2^k}} \\
&= \prod_{k=0}^\infty \frac{2^{2^{k+1}} + 1 + 2^{-2^{k+1}}}{2^{2^k} + 1 + 2^{-2^k}} \cdot
\frac{2^{2^k} - 2^{-2^k}}{2^{2^{k+1}} - 2^{2^{-k-1}}} \\
&= \frac{2^{2^0} - 2^{-2^0}}{2^{2^0}+1 + 2^{-2^0}} = \frac{3}{7}.
\end{align*}
[/sp]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K