MHB How is the Laplacian expressed in spherical coordinates?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The discussion focuses on expressing the Laplacian in spherical coordinates for a function defined in three-dimensional space. The Laplacian in rectangular coordinates is defined as the sum of second partial derivatives with respect to x, y, and z. The equivalent expression in spherical coordinates involves terms that account for the radial distance and angular components. A participant named Sudharaka provided an answer, and the original poster plans to edit the post to include a step-by-step justification of the transformation from rectangular to spherical coordinates. The thread emphasizes the mathematical derivation of the Laplacian in different coordinate systems.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks again to those who participated in last week's POTW! Here's this week's problem!

-----

Problem: Let $u:\mathbb{R}^3\rightarrow \mathbb{R}$, and define the Laplacian $\nabla^2u$ in rectangular coordinates $(x,y,z)$ by
\[\nabla^2u=\frac{\partial^2u}{\partial x^2} + \frac{\partial^2u}{\partial y^2} + \frac{\partial^2u}{\partial z^2}.\]
Show that the Laplacian $\nabla^2u$ in spherical coordinates $(\rho,\phi,\theta)$ is given by
\[\nabla^2u=\frac{\partial^2u}{\partial\rho^2} + \frac{2}{\rho}\frac{\partial u}{\partial\rho} + \frac{1}{\rho^2}\frac{\partial^2u}{\partial\phi^2} + \frac{\cot\phi}{\rho^2}\frac{\partial u}{\partial\phi} + \frac{1}{\rho^2\sin^2\phi} \frac{\partial^2u}{\partial \theta^2}\]

-----

Suggestion:
It may be a good idea to convert from rectangular to cylindrical coordinates $(r,\theta,z)$ first, where the Laplacian is
\[\nabla^2u=\frac{\partial^2u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2u}{\partial\theta^2} + \frac{\partial^2u}{\partial z^2}\]
and then convert from cylindrical to spherical.

 
Last edited:
Physics news on Phys.org
This week's question was answered by Sudharaka. You can find his answer below.

The gradient of a scalar field in spherical coordinates \((\rho,\,\phi,\,\theta)\) is given by,\[\nabla u(\rho, \phi, \theta) = \frac{\partial u}{\partial \rho}\mathbf{e}_\rho+\frac{1}{\rho}\frac{\partial u}{\partial \phi}\mathbf{e}_\phi+\frac{1}{\rho \sin\phi}\frac{\partial u}{\partial \theta}\mathbf{e}_\theta\]
The Laplacian is the divergence of the gradient. So we get,
\begin{eqnarray}
\nabla^2u &=& \operatorname{div}\left(\frac{\partial u}{\partial \rho}\mathbf{e}_\rho+\frac{1}{\rho}\frac{\partial u}{\partial \phi}\mathbf{e}_\phi+\frac{1}{\rho \sin\phi}\frac{\partial u}{\partial \theta}\mathbf{e}_\theta\right)\\
&=& \frac1{\rho^2} \frac{\partial}{\partial \rho}\left(\rho^2 \frac{\partial u}{\partial \rho}\right) + \frac1{\rho\sin\phi} \frac{\partial}{\partial \phi} \left(\frac{\sin\phi}{\rho}\frac{\partial u}{\partial \phi}\right) + \frac1{\rho\sin\phi} \frac{\partial}{\partial \theta}\left(\frac{1}{\rho \sin\phi}\frac{\partial u}{\partial \theta}\right)
\end{eqnarray}
Simplification yields,
\[\nabla^2u=\frac{\partial^2u}{\partial\rho^2} + \frac{2}{\rho}\frac{\partial u}{\partial\rho} + \frac{1}{\rho^2}\frac{\partial^2u}{\partial\phi^2} + \frac{\cot\phi}{\rho^2}\frac{\partial u}{\partial\phi} + \frac{1}{\rho^2\sin^2\phi} \frac{\partial^2u}{\partial \theta^2}\]

In the next couple days, I'll edit this post to include a step by step justification of the identity from rectangular coordinates.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
4K
Replies
3
Views
306
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
914
  • · Replies 3 ·
Replies
3
Views
2K