How Many Non-Congruent Triangles with Integer Sides Can a Given Perimeter Form?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on the function $f(n)$, which represents the number of non-congruent integer-sided triangles that can be formed with a given perimeter $n$. Key findings include that $f(1999)$ is greater than $f(1996)$, and that $f(2000)$ is equal to $f(1997)$. The solution was successfully provided by user kaliprasad, demonstrating a clear understanding of the properties of integer-sided triangles in relation to their perimeter.

PREREQUISITES
  • Understanding of integer-sided triangles and their properties
  • Familiarity with the concept of congruence in geometry
  • Basic knowledge of mathematical functions and notation
  • Ability to analyze and interpret mathematical inequalities
NEXT STEPS
  • Research the properties of integer-sided triangles and their perimeter constraints
  • Study the concept of congruence in geometric figures
  • Explore combinatorial mathematics related to triangle formation
  • Investigate the implications of triangle inequalities on non-congruent triangles
USEFUL FOR

Mathematicians, geometry enthusiasts, and students studying combinatorial geometry or number theory will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

For any natural number $n$, ($n\ge 3$), let $f(n)$ denote the number of non-congruent integer-sided triangles with perimeter $n$ (e.g., $f(3)=1,\,f(4)=0,\,f(7)=2$). Show that

a. $f(1999)>f(1996)$,
b. $f(2000)=f(1997)$.

-----

 
Physics news on Phys.org
Congratulations to kaliprasad for his correct solution! (Cool)

You can find the suggested solution as follows:
(a) Let $a,\,b,\,c$ be the sides of a triangle with $a+b+c=1996$ and each being a positive integer. Then $a+1,\,b+1,\,c+1$ are also sides of a triangle with perimeter 1999 because $b+c>a$ implies $(b+1)+(c+1)>a+1$ and so on. Moreover (999,999,1) form the sides of a triangle with perimeter 1999, which is not obtainable in the form $a+1,\,b+1,\,c+1$ where $a,\,b,\,c$ are the integers and the sides of a triangle with $a+b+c=1996$. We conclude that $f(1999)>f(1996)$.

(b) As in the case (a), we conclude that $f(2000)>f(1997)$. On the other hand, if $x,\,y,\,z$ are the integer sides of a triangle with $x+y+z=2000$, and say $x\ge y\ge z\ge 1$, then we cannot have $z=1$ for otherwise we would get $x+y=1999$, forcing $x,\,y$ to have opposite parity so that $x-y\ge 1=z$, violating triangle inequality for $x,\,y,\,z$. Hence $x\ge y \ge z >1$. This implies that $x-1\ge y-1 \ge z-1 >0$. We already have $y+z>x$. If $x\ge y+z-1$, then we see that $y+z-1\le x<y+z$, showing that $y+z-1=x$. Hence, we obtain $2000=x+y+z=2x+1$ which is impossible. We conclude that $x<y+z-1$. This shows that $x-1<(y-1)+(z-1)$ and hence $x-1,\,y-1,\,z-1$ are the sides of a triangle with perimeter 1997. This gives $f(2000)\le f(1997)$. Thus we obtain the desired result.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K