I How many piles given n identical rocks?

  • I
  • Thread starter Thread starter member 428835
  • Start date Start date
  • Tags Tags
    Rocks
Click For Summary
The discussion focuses on techniques to determine the number of piles, denoted as p, that can be formed with n identical rocks. Participants explore the relationship between n and p, noting specific cases where p equals 1, 2, 3, and 5 for n values of 1 through 4. The stars-and-bars method is suggested for distributing rocks into piles, though confusion remains about its application. A systematic grouping approach is proposed, demonstrating how to count partitions for n=7, resulting in 15 partitions. The conversation highlights the absence of a straightforward closed formula for this problem, with references to the Bell triangle as a potential aid.
member 428835
Is there a technique to count the amount of piles ##p## that can be made given ##n## identical rocks? We know ##n=1 \implies p=1##, ##n=2 \implies p=2##, ##n=3 \implies p=3##, ##n=4 \implies p=5##, and so on. I'm kind of lost as to how we approach it. It seems we have ##n## piles that we can distribute to, and we have ##n## "ones" we can distribute to the piles where each pile can have 0 to ##n## ones. I'd think something like stars-and-bars and somehow divide out the same scenarios, but I'm a little confused.
 
Physics news on Phys.org
joshmccraney said:
Is there a technique to count the amount of piles ##p## that can be made given ##n## identical rocks? We know ##n=1 \implies p=1##, ##n=2 \implies p=2##, ##n=3 \implies p=3##, ##n=4 \implies p=5##, and so on. I'm kind of lost as to how we approach it. It seems we have ##n## piles that we can distribute to, and we have ##n## "ones" we can distribute to the piles where each pile can have 0 to ##n## ones. I'd think something like stars-and-bars and somehow divide out the same scenarios, but I'm a little confused.
These are the partition numbers:

https://oeis.org/A000041
 
  • Informative
Likes Dale and DrClaude
joshmccraney said:
Is there a technique to count the amount of piles ##p## that can be made given ##n## identical rocks? We know ##n=1 \implies p=1##, ##n=2 \implies p=2##, ##n=3 \implies p=3##, ##n=4 \implies p=5##, and so on. I'm kind of lost as to how we approach it. It seems we have ##n## piles that we can distribute to, and we have ##n## "ones" we can distribute to the piles where each pile can have 0 to ##n## ones. I'd think something like stars-and-bars and somehow divide out the same scenarios, but I'm a little confused.
If you mean a technique to actually count, I start with piles of one using here an example of ##n=7##. Then systematically group into piles of 2 and then start over with a 3 group and 1's grouping by 2's again, then 3's and so forth. In each case you are simply moving a one left and adding it except each time you start with a larger grouping you go back to all ones for the rest.

1 1 1 1 1 1 1
2 1 1 1 1 1
2 2 1 1 1
2 2 2 1
3 1 1 1 1
3 2 1 1
3 2 2
3 3 1
4 1 1 1
4 2 1
4 3
5 1 1
5 2
6 1
7

giving 15 partitions. You can turn this into an algorithm.

Also, here is a Wolfram applet;

https://www.wolframalpha.com/widgets/view.jsp?id=ca10ab4a89d9f0f6f378b89881f63ba3
 
Last edited:
  • Like
Likes member 428835
I was surprised to learn there is no straightforward closed formula for this. Or even how many ways to do k piles with n rocks. It just seems odd that one can do low n cases in one's head but can't just write down a formula like permutations.
 
bob012345 said:
I was surprised to learn there is no straightforward closed formula for this. Or even how many ways to do k piles with n rocks. It just seems odd that one can do low n cases in one's head but can't just write down a formula like permutations.
Isn't the Bell triangle, while not a formula, a helpful approach?
 
joshmccraney said:
Isn't the Bell triangle, while not a formula, a helpful approach?
I'll look at that. Thanks.
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...