How to construct a table of values for Dirichlet characters?

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Table
Click For Summary
SUMMARY

The discussion focuses on constructing a table of values for Dirichlet characters modulo 16, highlighting that there are 8 such characters due to ## \varphi(16)=8 ##. The principal character is defined as ## \chi_{1}(n)=1 ## if ## (n, k)=1 ## and 0 otherwise. Participants explore the implications of the homomorphism property ## \chi(mn)=\chi(m)\chi(n) ## and derive values for ## \chi(n) ## for odd integers in the group of units of ## \mathbb{Z}_{16} ##. The final table of values for the characters is constructed, confirming that the sums ## \sum_{\chi \pmod {16}}\chi(3)=0 ## and ## \sum_{\chi \pmod {16}}\chi(11)=0 ##.

PREREQUISITES
  • Understanding of Dirichlet characters and their properties
  • Familiarity with the Euler's totient function, specifically ## \varphi(16) ##
  • Knowledge of group theory, particularly the group of units in modular arithmetic
  • Basic complex number operations and roots of unity
NEXT STEPS
  • Study the properties of Dirichlet characters in greater detail
  • Learn about the implications of the homomorphism property in group theory
  • Explore the computation of character sums and their applications in number theory
  • Investigate the structure of the group of units in ## \mathbb{Z}_n ## for various values of n
USEFUL FOR

Mathematicians, number theorists, and students interested in algebraic structures, particularly those studying Dirichlet characters and their applications in analytic number theory.

Math100
Messages
817
Reaction score
230
Homework Statement
Construct a table of values for all the nonprincipal Dirichlet characters modulo ## 16 ##.
Relevant Equations
A Dirichlet character modulo ## k ## is an arithmetic function ## \chi:\mathbb{N}\rightarrow \mathbb{C} ## satisfying
(1) ## \chi(n+k)=\chi(n), \forall n\in\mathbb{N} ##
(2) ## \chi(mn)=\chi(m)\chi(n), \forall m, n\in\mathbb{N} ##
(3) ## \chi(n)\neq0\Leftrightarrow (n, k)=1 ##.

The principal character modulo ## k ## is the unique Dirichlet character ## \chi_{1} ## such that ## \chi_{1}(n)=1\Leftrightarrow (n, k)=1 ##.

If ## \chi ## is not the principal character ## \chi_{0} ## modulo ## k ##,
then ## \left | \sum_{n\leq x}\chi(n) \right |\leq \varphi(k) ##, for ## x\geq 1 ##.
If ## \chi=\chi_{0} ##, then ## \left | \sum_{n\leq x}\chi(n)-\frac{\varphi(k)}{k}x \right |\leq 2\varphi(k) ##, for ## x\geq 1 ##.
Since ## \varphi(16)=8 ##, it follows that there are ## 8 ## Dirichlet characters modulo ## 16 ##.
 
Physics news on Phys.org
I just learned about these now, but maybe you can start by writing down which values of ##n## can be non zero, and what possible values ##\chi(n)## can actually take. I don't think there are that many choices.
 
  • Like
Likes   Reactions: PhDeezNutz
Office_Shredder said:
I just learned about these now, but maybe you can start by writing down which values of ##n## can be non zero, and what possible values ##\chi(n)## can actually take. I don't think there are that many choices.
The principal character ## \chi_{1}(n)=1 ## if ## (n, k)=1 ##, and ## 0 ## if ## (n, k)>1 ##.
So I think ## \chi_{1}(n)=1 ## for ## n=1, 3, 5, 7, 9, 11, 13, 15 ## because if ## n ## is even, then the function would equal to ## 0 ##. But how should I find other values of ## \chi_{2}(n), \chi_{3}(n), ..., \chi_{8}(n) ## for ## n=1, 3, 5, 7, 9, 11, 13, 15 ##?
 
Do you know any formula that has to be true for, say ##\chi(1)##? What about ##\chi(3)##?
 
  • Like
Likes   Reactions: PhDeezNutz
Office_Shredder said:
Do you know any formula that has to be true for, say ##\chi(1)##? What about ##\chi(3)##?
No, what's the formula for them?
 
Math100 said:
No, what's the formula for them?
##\chi(mn)=\chi(m)\chi(n)##. This means ##\chi## is a group homomorphism from the units of ##\mathbb{Z}## mod n to ##\mathbb{C}^x##, the complex numbers minus 0 under multiplication.This has powerful implications. The simplest one is what ##\chi(1)## can be while still satisfying ##\chi(mn)=\chi(m)\chi(n)##. Pick some choices of ##m## and ##n## that might be useful.
 
## \chi(n)^{\varphi(k)}=1 ## whenever ## (n, k)=1 ##.
So ## \chi_{i}(3)\in\left \{ 1, -1, i, -i \right \} ##. Same thing for ## \chi_{i}(5), \chi_{i}(7), ..., \chi_{i}(15) ##. But how to determine each value for ## \chi_{i}(n) ##?
 
I think you actually get ##\chi(3)^8=1## so it can be any of the 8 roots of unity. Let's say ##\chi(3)=\zeta##
Then you have ##\chi(9)=\chi(3*3)##. Try to figure out what it is in terms of ##\zeta##. Then try adding another factor of 3 and see if you can pin down the next term.
 
Since the order doesn't matter, I got ## \chi_{1}(3)=1, \chi_{2}(3)=-1, \chi_{3}(3)=i, \chi_{4}(3)=-i, \chi_{5}(3)=1, \chi_{6}(3)=-1, \chi_{7}(3)=i, \chi_{8}(3)=-i ##. So this means ## \chi_{1}(9)=1, \chi_{2}(9)=1, \chi_{3}(9)=-1, \chi_{4}(9)=-1, \chi_{5}(9)=1, \chi_{6}(9)=1, \chi_{7}(9)=-1, \chi_{8}(9)=-1 ##. Because ## 3^2=9 ##. Is this right? If so, then what about ## \chi(5), \chi(7), \chi(11), \chi(13), \chi(15) ##?
 
  • #10
What is ##\chi(27)##? Don't just write down the first answer you think of and come back, think about it a bit more.

Also, you're still missing the fact that there are 8 choices for ##\chi(3)##.
 
  • #11
That looks promising.
Math100 said:
Since the order doesn't matter, I got ## \chi_{1}(3)=1, \chi_{2}(3)=-1, \chi_{3}(3)=i, \chi_{4}(3)=-i, \chi_{5}(3)=1, \chi_{6}(3)=-1, \chi_{7}(3)=i, \chi_{8}(3)=-i ##. So this means ## \chi_{1}(9)=1, \chi_{2}(9)=1, \chi_{3}(9)=-1, \chi_{4}(9)=-1, \chi_{5}(9)=1, \chi_{6}(9)=1, \chi_{7}(9)=-1, \chi_{8}(9)=-1 ##. Because ## 3^2=9 ##. Is this right? If so, then what about ## \chi(5), \chi(7), \chi(11), \chi(13), \chi(15) ##?
Let's have a look at the group we are talking about, namely the group of units of ##\mathbb{Z}_{16}.## This group has ##\varphi (16)=8## elements which are ##G=\{1,3,5,7,9,11,13,15\}.## The elements ##3,5,11,13## are of order four, and ##7,9,15## of order two. Since a Dirichlet character is a group homomorphism into the multiplicative group of complex numbers (see post #6), we have
$$
\chi(k)^2=\chi(k)\cdot \chi(k)=\chi(k\cdot k)=\chi(k^2)=\chi(1)=1\text{ for all }k\in \{7,9,15\},
$$
i.e. only two possible targets ##\pm 1.## We also get
$$
\chi(k)^4=\chi(k^4)=\chi(1)=1\text{ for all }k\in \{3,5,11,13\},
$$
and of course always ##\chi(1)=1.## Complex numbers of order four are only ##\pm i ,## but they can also map onto ##\pm 1## under ##\chi.##

Start with elements of order two. There are only ##2^2## possibilities. Since ##7\cdot 9 = 15,## we only need the values for ##7## and ##9.##

Before you start writing down all other combinations, first write down the multiplications in ##G.## E.g. if you set ##\chi(9)=1## then ##\chi(3)= i ## isn't possible anymore: ##1=\chi(9)\neq\chi(3)\cdot \chi(3)=i \cdot i = -1,## a contradiction.
 
Last edited:
  • Like
Likes   Reactions: Math100 and WWGD
  • #12
fresh_42 said:
That looks promising.

Let's have a look at the group we are talking about, namely the group of units of ##\mathbb{Z}_{16}.## This group has ##\varphi (16)=8## elements which are ##G=\{1,3,5,7,9,11,13,15\}.## The elements ##3,5,11,13## are of order four, and ##7,9,15## of order two. Since a Dirichlet character is a group homomorphism into the multiplicative group of complex numbers (see post #6), we have
$$
\chi(k)^2=\chi(k)\cdot \chi(k)=\chi(k\cdot k)=\chi(k^2)=\chi(1)=1\text{ for all }k\in \{7,9,15\},
$$
i.e. only two possible targets ##\pm 1.## We also get
$$
\chi(k)^4=\chi(k^4)=\chi(1)=1\text{ for all }k\in \{3,5,11,13\},
$$
and of course always ##\chi(1)=1.## Complex numbers of order four are only ##\pm i ,## but they can also map onto ##\pm 1## under ##\chi.##

Start with elements of order two. There are only ##2^2## possibilities. Since ##7\cdot 9 = 15,## we only need the values for ##7## and ##9.##

Before you start writing down all other combinations, first write down the multiplications in ##G.## E.g. if you set ##\chi(9)=1## then ##\chi(3)= i ## isn't possible anymore: ##1=\chi(9)\neq\chi(3)\cdot \chi(3)=i \cdot i = -1,## a contradiction.
So the order two elements for ## 7, 9, 15 ## are ## \chi_{1}(7)=1, \chi_{2}(7)=-1, \chi_{2}(7)=1, \chi_{3}(7)=-1, \chi_{4}(7)=1, \chi_{5}(7)=-1, \chi_{6}(7)=1, \chi_{7}(7)=-1, \chi_{8}(7)=1 ##? But what about ## 9, 15 ##?
 
  • #13
You have the choice between ##4## possibilities:
\begin{array}{|c|c|}
\hline \chi(7) & \chi(9) \\
\hline 1 & 1 \\
\hline -1 & 1 \\
\hline 1 & -1 \\
\hline -1 & -1 \\
\hline
\end{array}
Choose one of them, e.g. ##\chi(7)=-1\, , \, \chi(9)=1.## Then ##\chi(15)=\chi(7)\cdot \chi(9)=-1.##

You first need the multiplication table of ##G.##
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 &3 & 5 & 7 & 9 &11 & 13 & 15 \\
\hline 3 & 9 & 15 & 5 & \ldots & \ldots & \ldots &\ldots \\
\hline 5 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 7 & \ldots & \ldots & \ldots & 15 & \ldots & \ldots &\ldots \\
\hline 9 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 11 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 13 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 15 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline
\end{array}

##\chi(3),\chi(5),\chi(11),\chi(13) \in \{-1,+1,- i , + i \}## which are too many possibilities to check them all. Fortunately, it isn't necessary to check them all. E.g. ##\chi(3)\cdot\chi(3)=\chi(9)## and if we are in the case ##\chi(9)=-1## then ##\chi(3)\in \{\pm i\}## are the only possibilities left. Then make two cases: ##\chi(3)=- i ## that fixes e.g. ##\chi(3)\cdot \chi(9)=\chi(11)= i ## and so on, then consider ##\chi(3)=+ i ## etc.
 
  • Like
Likes   Reactions: Math100
  • #14
fresh_42 said:
You have the choice between ##4## possibilities:
\begin{array}{|c|c|}
\hline \chi(7) & \chi(9) \\
\hline 1 & 1 \\
\hline -1 & 1 \\
\hline 1 & -1 \\
\hline -1 & -1 \\
\hline
\end{array}
Choose one of them, e.g. ##\chi(7)=-1\, , \, \chi(9)=1.## Then ##\chi(15)=\chi(7)\cdot \chi(9)=-1.##

You first need the multiplication table of ##G.##
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 &3 & 5 & 7 & 9 &11 & 13 & 15 \\
\hline 3 & 9 & 15 & 5 & \ldots & \ldots & \ldots &\ldots \\
\hline 5 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 7 & \ldots & \ldots & \ldots & 15 & \ldots & \ldots &\ldots \\
\hline 9 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 11 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 13 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 15 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline
\end{array}

##\chi(3),\chi(5),\chi(11),\chi(13) \in \{-1,+1,- i , + i \}## which are too many possibilities to check them all. Fortunately, it isn't necessary to check them all. E.g. ##\chi(3)\cdot\chi(3)=\chi(9)## and if we are in the case ##\chi(9)=-1## then ##\chi(3)\in \{\pm i\}## are the only possibilities left. Then make two cases: ##\chi(3)=- i ## that fixes e.g. ##\chi(3)\cdot \chi(9)=\chi(11)= i ## and so on, then consider ##\chi(3)=+ i ## etc.
So
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline 3 & 9 & 15 & 5 & 11 & 1 & 7 & 13 \\
\hline 5 & 15 & 9 & 3 & 13 & 7 & 1 & 11 \\
\hline 7 & 5 & 3 & 1 & 15 & 13 & 11 & 9 \\
\hline 9 & 11 & 13 & 15 & 1 & 3 & 5 & 7 \\
\hline 11 & 1 & 7 & 13 & 3 & 9 & 15 & 5 \\
\hline 13 & 7 & 1 & 11 & 5 & 15 & 9 & 3 \\
\hline 15 & 13 & 11 & 9 & 7 & 5 & 3 & 1 \\
\hline
\end{array}
?
 
  • #15
Math100 said:
So
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline 3 & 9 & 15 & 5 & 11 & 1 & 7 & 13 \\
\hline 5 & 15 & 9 & 3 & 13 & 7 & 1 & 11 \\
\hline 7 & 5 & 3 & 1 & 15 & 13 & 11 & 9 \\
\hline 9 & 11 & 13 & 15 & 1 & 3 & 5 & 7 \\
\hline 11 & 1 & 7 & 13 & 3 & 9 & 15 & 5 \\
\hline 13 & 7 & 1 & 11 & 5 & 15 & 9 & 3 \\
\hline 15 & 13 & 11 & 9 & 7 & 5 & 3 & 1 \\
\hline
\end{array}
?
Yes. You need it to compute ##\chi(n)## in case ##n=a\cdot b.## You have still many cases but I do not see a shortcut. Fix ##\chi(7),\chi(9)## and then all four cases for ##\chi(3)## which might have subcases for ##\chi(11).##
 
  • #16
At first, I got this.
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \chi_{2}(n) & 1 & -1 & \Idots & -1 & 1 & -1 & \Idots & -1 \\
\hline \chi_{3}(n) & 1 & i & \Idots & 1 & -1 & -i & \Idots & -1 \\
\hline \chi_{4}(n) & 1 & -i & \Idots & -1 & -1 & i & \Idots & 1 \\
\hline \chi_{5}(n) & 1 & 1 & \Idots & 1 & 1 & 1 & \Idots & 1 \\
\hline \chi_{6}(n) & 1 & -1 & \Idots & -1 & 1 & -1 & \Idots & -1 \\
\hline \chi_{7}(n) & 1 & i & \Idots & 1 & -1 & -i & \Idots & -1 \\
\hline \chi_{8}(n) & 1 & -i & \Idots & -1 & -1 & i & \Idots & 1 \\
\hline
\end{array}

But this didn't seem to be right/correct, because I couldn't get the desired result at the end. So I made other attempts and finally got this.
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \chi_{2}(n) & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\hline \chi_{3}(n) & 1 & i & i & 1 & -1 & -i & -i & -1 \\
\hline \chi_{4}(n) & 1 & -i & i & -1 & -1 & i & -i & 1 \\
\hline \chi_{5}(n) & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\hline \chi_{6}(n) & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\hline \chi_{7}(n) & 1 & i & -i & -1 & -1 & -i & i & 1 \\
\hline \chi_{8}(n) & 1 & -i & -i & 1 & -1 & i & i & -1 \\
\hline
\end{array}

Also, the second part of the question/problem asked to verify from my table that ## \sum_{\chi \pmod {16}}\chi(3)=0 ## and ## \sum_{\chi \pmod {16}}\chi(11)=0 ##. So I think ## \sum_{\chi \pmod {16}}\chi(3)=1+(-1)+i+(-i)+1+(-1)+i+(-i)=0 ## and ## \sum_{\chi \pmod {16}}\chi(11)=1+(-1)+(-i)+i+1+(-1)+(-i)+i=0 ##. Is this right/correct?
 
  • #17
Math100 said:
At first, I got this.
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \chi_{2}(n) & 1 & -1 & \Idots & -1 & 1 & -1 & \Idots & -1 \\
\hline \chi_{3}(n) & 1 & i & \Idots & 1 & -1 & -i & \Idots & -1 \\
\hline \chi_{4}(n) & 1 & -i & \Idots & -1 & -1 & i & \Idots & 1 \\
\hline \chi_{5}(n) & 1 & 1 & \Idots & 1 & 1 & 1 & \Idots & 1 \\
\hline \chi_{6}(n) & 1 & -1 & \Idots & -1 & 1 & -1 & \Idots & -1 \\
\hline \chi_{7}(n) & 1 & i & \Idots & 1 & -1 & -i & \Idots & -1 \\
\hline \chi_{8}(n) & 1 & -i & \Idots & -1 & -1 & i & \Idots & 1 \\
\hline
\end{array}

But this didn't seem to be right/correct, because I couldn't get the desired result at the end. So I made other attempts and finally got this.
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \chi_{2}(n) & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\hline \chi_{3}(n) & 1 & i & i & 1 & -1 & -i & -i & -1 \\
\hline \chi_{4}(n) & 1 & -i & i & -1 & -1 & i & -i & 1 \\
\hline \chi_{5}(n) & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\hline \chi_{6}(n) & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\hline \chi_{7}(n) & 1 & i & -i & -1 & -1 & -i & i & 1 \\
\hline \chi_{8}(n) & 1 & -i & -i & 1 & -1 & i & i & -1 \\
\hline
\end{array}

Also, the second part of the question/problem asked to verify from my table that ## \sum_{\chi \pmod {16}}\chi(3)=0 ## and ## \sum_{\chi \pmod {16}}\chi(11)=0 ##. So I think ## \sum_{\chi \pmod {16}}\chi(3)=1+(-1)+i+(-i)+1+(-1)+i+(-i)=0 ## and ## \sum_{\chi \pmod {16}}\chi(11)=1+(-1)+(-i)+i+1+(-1)+(-i)+i=0 ##. Is this right/correct?
Looks good.

There are two theorems that you could check:
1.) Characters form a group.
2.) Characters are ##\mathbb{C}-##linear independent.
 
  • Like
Likes   Reactions: Math100
  • #18
Are those Young Tableaux?
 
  • #19
WWGD said:
Are those Young Tableaux?
No.
 

Similar threads

Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
15
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
11
Views
2K