How to construct a table of values for Dirichlet characters?

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Table
AI Thread Summary
There are eight Dirichlet characters modulo 16, derived from the group of units in Z16, which includes the odd integers {1, 3, 5, 7, 9, 11, 13, 15}. The principal character, χ₁(n), equals 1 for odd n and 0 for even n. The characters can be defined using the property χ(mn) = χ(m)χ(n), leading to specific values for χ(3), χ(5), χ(7), etc., which can take on values of ±1 and ±i based on their orders. The discussion emphasizes the need to carefully construct a multiplication table for these characters to ensure consistency and correctness in their values. Ultimately, the sums of the characters at specific points, such as χ(3) and χ(11), should equal zero, confirming the properties of Dirichlet characters.
Math100
Messages
813
Reaction score
229
Homework Statement
Construct a table of values for all the nonprincipal Dirichlet characters modulo ## 16 ##.
Relevant Equations
A Dirichlet character modulo ## k ## is an arithmetic function ## \chi:\mathbb{N}\rightarrow \mathbb{C} ## satisfying
(1) ## \chi(n+k)=\chi(n), \forall n\in\mathbb{N} ##
(2) ## \chi(mn)=\chi(m)\chi(n), \forall m, n\in\mathbb{N} ##
(3) ## \chi(n)\neq0\Leftrightarrow (n, k)=1 ##.

The principal character modulo ## k ## is the unique Dirichlet character ## \chi_{1} ## such that ## \chi_{1}(n)=1\Leftrightarrow (n, k)=1 ##.

If ## \chi ## is not the principal character ## \chi_{0} ## modulo ## k ##,
then ## \left | \sum_{n\leq x}\chi(n) \right |\leq \varphi(k) ##, for ## x\geq 1 ##.
If ## \chi=\chi_{0} ##, then ## \left | \sum_{n\leq x}\chi(n)-\frac{\varphi(k)}{k}x \right |\leq 2\varphi(k) ##, for ## x\geq 1 ##.
Since ## \varphi(16)=8 ##, it follows that there are ## 8 ## Dirichlet characters modulo ## 16 ##.
 
Physics news on Phys.org
I just learned about these now, but maybe you can start by writing down which values of ##n## can be non zero, and what possible values ##\chi(n)## can actually take. I don't think there are that many choices.
 
  • Like
Likes PhDeezNutz
Office_Shredder said:
I just learned about these now, but maybe you can start by writing down which values of ##n## can be non zero, and what possible values ##\chi(n)## can actually take. I don't think there are that many choices.
The principal character ## \chi_{1}(n)=1 ## if ## (n, k)=1 ##, and ## 0 ## if ## (n, k)>1 ##.
So I think ## \chi_{1}(n)=1 ## for ## n=1, 3, 5, 7, 9, 11, 13, 15 ## because if ## n ## is even, then the function would equal to ## 0 ##. But how should I find other values of ## \chi_{2}(n), \chi_{3}(n), ..., \chi_{8}(n) ## for ## n=1, 3, 5, 7, 9, 11, 13, 15 ##?
 
Do you know any formula that has to be true for, say ##\chi(1)##? What about ##\chi(3)##?
 
  • Like
Likes PhDeezNutz
Office_Shredder said:
Do you know any formula that has to be true for, say ##\chi(1)##? What about ##\chi(3)##?
No, what's the formula for them?
 
Math100 said:
No, what's the formula for them?
##\chi(mn)=\chi(m)\chi(n)##. This means ##\chi## is a group homomorphism from the units of ##\mathbb{Z}## mod n to ##\mathbb{C}^x##, the complex numbers minus 0 under multiplication.This has powerful implications. The simplest one is what ##\chi(1)## can be while still satisfying ##\chi(mn)=\chi(m)\chi(n)##. Pick some choices of ##m## and ##n## that might be useful.
 
## \chi(n)^{\varphi(k)}=1 ## whenever ## (n, k)=1 ##.
So ## \chi_{i}(3)\in\left \{ 1, -1, i, -i \right \} ##. Same thing for ## \chi_{i}(5), \chi_{i}(7), ..., \chi_{i}(15) ##. But how to determine each value for ## \chi_{i}(n) ##?
 
I think you actually get ##\chi(3)^8=1## so it can be any of the 8 roots of unity. Let's say ##\chi(3)=\zeta##
Then you have ##\chi(9)=\chi(3*3)##. Try to figure out what it is in terms of ##\zeta##. Then try adding another factor of 3 and see if you can pin down the next term.
 
Since the order doesn't matter, I got ## \chi_{1}(3)=1, \chi_{2}(3)=-1, \chi_{3}(3)=i, \chi_{4}(3)=-i, \chi_{5}(3)=1, \chi_{6}(3)=-1, \chi_{7}(3)=i, \chi_{8}(3)=-i ##. So this means ## \chi_{1}(9)=1, \chi_{2}(9)=1, \chi_{3}(9)=-1, \chi_{4}(9)=-1, \chi_{5}(9)=1, \chi_{6}(9)=1, \chi_{7}(9)=-1, \chi_{8}(9)=-1 ##. Because ## 3^2=9 ##. Is this right? If so, then what about ## \chi(5), \chi(7), \chi(11), \chi(13), \chi(15) ##?
 
  • #10
What is ##\chi(27)##? Don't just write down the first answer you think of and come back, think about it a bit more.

Also, you're still missing the fact that there are 8 choices for ##\chi(3)##.
 
  • #11
That looks promising.
Math100 said:
Since the order doesn't matter, I got ## \chi_{1}(3)=1, \chi_{2}(3)=-1, \chi_{3}(3)=i, \chi_{4}(3)=-i, \chi_{5}(3)=1, \chi_{6}(3)=-1, \chi_{7}(3)=i, \chi_{8}(3)=-i ##. So this means ## \chi_{1}(9)=1, \chi_{2}(9)=1, \chi_{3}(9)=-1, \chi_{4}(9)=-1, \chi_{5}(9)=1, \chi_{6}(9)=1, \chi_{7}(9)=-1, \chi_{8}(9)=-1 ##. Because ## 3^2=9 ##. Is this right? If so, then what about ## \chi(5), \chi(7), \chi(11), \chi(13), \chi(15) ##?
Let's have a look at the group we are talking about, namely the group of units of ##\mathbb{Z}_{16}.## This group has ##\varphi (16)=8## elements which are ##G=\{1,3,5,7,9,11,13,15\}.## The elements ##3,5,11,13## are of order four, and ##7,9,15## of order two. Since a Dirichlet character is a group homomorphism into the multiplicative group of complex numbers (see post #6), we have
$$
\chi(k)^2=\chi(k)\cdot \chi(k)=\chi(k\cdot k)=\chi(k^2)=\chi(1)=1\text{ for all }k\in \{7,9,15\},
$$
i.e. only two possible targets ##\pm 1.## We also get
$$
\chi(k)^4=\chi(k^4)=\chi(1)=1\text{ for all }k\in \{3,5,11,13\},
$$
and of course always ##\chi(1)=1.## Complex numbers of order four are only ##\pm i ,## but they can also map onto ##\pm 1## under ##\chi.##

Start with elements of order two. There are only ##2^2## possibilities. Since ##7\cdot 9 = 15,## we only need the values for ##7## and ##9.##

Before you start writing down all other combinations, first write down the multiplications in ##G.## E.g. if you set ##\chi(9)=1## then ##\chi(3)= i ## isn't possible anymore: ##1=\chi(9)\neq\chi(3)\cdot \chi(3)=i \cdot i = -1,## a contradiction.
 
Last edited:
  • Like
Likes Math100 and WWGD
  • #12
fresh_42 said:
That looks promising.

Let's have a look at the group we are talking about, namely the group of units of ##\mathbb{Z}_{16}.## This group has ##\varphi (16)=8## elements which are ##G=\{1,3,5,7,9,11,13,15\}.## The elements ##3,5,11,13## are of order four, and ##7,9,15## of order two. Since a Dirichlet character is a group homomorphism into the multiplicative group of complex numbers (see post #6), we have
$$
\chi(k)^2=\chi(k)\cdot \chi(k)=\chi(k\cdot k)=\chi(k^2)=\chi(1)=1\text{ for all }k\in \{7,9,15\},
$$
i.e. only two possible targets ##\pm 1.## We also get
$$
\chi(k)^4=\chi(k^4)=\chi(1)=1\text{ for all }k\in \{3,5,11,13\},
$$
and of course always ##\chi(1)=1.## Complex numbers of order four are only ##\pm i ,## but they can also map onto ##\pm 1## under ##\chi.##

Start with elements of order two. There are only ##2^2## possibilities. Since ##7\cdot 9 = 15,## we only need the values for ##7## and ##9.##

Before you start writing down all other combinations, first write down the multiplications in ##G.## E.g. if you set ##\chi(9)=1## then ##\chi(3)= i ## isn't possible anymore: ##1=\chi(9)\neq\chi(3)\cdot \chi(3)=i \cdot i = -1,## a contradiction.
So the order two elements for ## 7, 9, 15 ## are ## \chi_{1}(7)=1, \chi_{2}(7)=-1, \chi_{2}(7)=1, \chi_{3}(7)=-1, \chi_{4}(7)=1, \chi_{5}(7)=-1, \chi_{6}(7)=1, \chi_{7}(7)=-1, \chi_{8}(7)=1 ##? But what about ## 9, 15 ##?
 
  • #13
You have the choice between ##4## possibilities:
\begin{array}{|c|c|}
\hline \chi(7) & \chi(9) \\
\hline 1 & 1 \\
\hline -1 & 1 \\
\hline 1 & -1 \\
\hline -1 & -1 \\
\hline
\end{array}
Choose one of them, e.g. ##\chi(7)=-1\, , \, \chi(9)=1.## Then ##\chi(15)=\chi(7)\cdot \chi(9)=-1.##

You first need the multiplication table of ##G.##
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 &3 & 5 & 7 & 9 &11 & 13 & 15 \\
\hline 3 & 9 & 15 & 5 & \ldots & \ldots & \ldots &\ldots \\
\hline 5 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 7 & \ldots & \ldots & \ldots & 15 & \ldots & \ldots &\ldots \\
\hline 9 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 11 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 13 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 15 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline
\end{array}

##\chi(3),\chi(5),\chi(11),\chi(13) \in \{-1,+1,- i , + i \}## which are too many possibilities to check them all. Fortunately, it isn't necessary to check them all. E.g. ##\chi(3)\cdot\chi(3)=\chi(9)## and if we are in the case ##\chi(9)=-1## then ##\chi(3)\in \{\pm i\}## are the only possibilities left. Then make two cases: ##\chi(3)=- i ## that fixes e.g. ##\chi(3)\cdot \chi(9)=\chi(11)= i ## and so on, then consider ##\chi(3)=+ i ## etc.
 
  • Like
Likes Math100
  • #14
fresh_42 said:
You have the choice between ##4## possibilities:
\begin{array}{|c|c|}
\hline \chi(7) & \chi(9) \\
\hline 1 & 1 \\
\hline -1 & 1 \\
\hline 1 & -1 \\
\hline -1 & -1 \\
\hline
\end{array}
Choose one of them, e.g. ##\chi(7)=-1\, , \, \chi(9)=1.## Then ##\chi(15)=\chi(7)\cdot \chi(9)=-1.##

You first need the multiplication table of ##G.##
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 &3 & 5 & 7 & 9 &11 & 13 & 15 \\
\hline 3 & 9 & 15 & 5 & \ldots & \ldots & \ldots &\ldots \\
\hline 5 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 7 & \ldots & \ldots & \ldots & 15 & \ldots & \ldots &\ldots \\
\hline 9 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 11 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 13 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 15 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline
\end{array}

##\chi(3),\chi(5),\chi(11),\chi(13) \in \{-1,+1,- i , + i \}## which are too many possibilities to check them all. Fortunately, it isn't necessary to check them all. E.g. ##\chi(3)\cdot\chi(3)=\chi(9)## and if we are in the case ##\chi(9)=-1## then ##\chi(3)\in \{\pm i\}## are the only possibilities left. Then make two cases: ##\chi(3)=- i ## that fixes e.g. ##\chi(3)\cdot \chi(9)=\chi(11)= i ## and so on, then consider ##\chi(3)=+ i ## etc.
So
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline 3 & 9 & 15 & 5 & 11 & 1 & 7 & 13 \\
\hline 5 & 15 & 9 & 3 & 13 & 7 & 1 & 11 \\
\hline 7 & 5 & 3 & 1 & 15 & 13 & 11 & 9 \\
\hline 9 & 11 & 13 & 15 & 1 & 3 & 5 & 7 \\
\hline 11 & 1 & 7 & 13 & 3 & 9 & 15 & 5 \\
\hline 13 & 7 & 1 & 11 & 5 & 15 & 9 & 3 \\
\hline 15 & 13 & 11 & 9 & 7 & 5 & 3 & 1 \\
\hline
\end{array}
?
 
  • #15
Math100 said:
So
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline 3 & 9 & 15 & 5 & 11 & 1 & 7 & 13 \\
\hline 5 & 15 & 9 & 3 & 13 & 7 & 1 & 11 \\
\hline 7 & 5 & 3 & 1 & 15 & 13 & 11 & 9 \\
\hline 9 & 11 & 13 & 15 & 1 & 3 & 5 & 7 \\
\hline 11 & 1 & 7 & 13 & 3 & 9 & 15 & 5 \\
\hline 13 & 7 & 1 & 11 & 5 & 15 & 9 & 3 \\
\hline 15 & 13 & 11 & 9 & 7 & 5 & 3 & 1 \\
\hline
\end{array}
?
Yes. You need it to compute ##\chi(n)## in case ##n=a\cdot b.## You have still many cases but I do not see a shortcut. Fix ##\chi(7),\chi(9)## and then all four cases for ##\chi(3)## which might have subcases for ##\chi(11).##
 
  • #16
At first, I got this.
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \chi_{2}(n) & 1 & -1 & \Idots & -1 & 1 & -1 & \Idots & -1 \\
\hline \chi_{3}(n) & 1 & i & \Idots & 1 & -1 & -i & \Idots & -1 \\
\hline \chi_{4}(n) & 1 & -i & \Idots & -1 & -1 & i & \Idots & 1 \\
\hline \chi_{5}(n) & 1 & 1 & \Idots & 1 & 1 & 1 & \Idots & 1 \\
\hline \chi_{6}(n) & 1 & -1 & \Idots & -1 & 1 & -1 & \Idots & -1 \\
\hline \chi_{7}(n) & 1 & i & \Idots & 1 & -1 & -i & \Idots & -1 \\
\hline \chi_{8}(n) & 1 & -i & \Idots & -1 & -1 & i & \Idots & 1 \\
\hline
\end{array}

But this didn't seem to be right/correct, because I couldn't get the desired result at the end. So I made other attempts and finally got this.
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \chi_{2}(n) & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\hline \chi_{3}(n) & 1 & i & i & 1 & -1 & -i & -i & -1 \\
\hline \chi_{4}(n) & 1 & -i & i & -1 & -1 & i & -i & 1 \\
\hline \chi_{5}(n) & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\hline \chi_{6}(n) & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\hline \chi_{7}(n) & 1 & i & -i & -1 & -1 & -i & i & 1 \\
\hline \chi_{8}(n) & 1 & -i & -i & 1 & -1 & i & i & -1 \\
\hline
\end{array}

Also, the second part of the question/problem asked to verify from my table that ## \sum_{\chi \pmod {16}}\chi(3)=0 ## and ## \sum_{\chi \pmod {16}}\chi(11)=0 ##. So I think ## \sum_{\chi \pmod {16}}\chi(3)=1+(-1)+i+(-i)+1+(-1)+i+(-i)=0 ## and ## \sum_{\chi \pmod {16}}\chi(11)=1+(-1)+(-i)+i+1+(-1)+(-i)+i=0 ##. Is this right/correct?
 
  • #17
Math100 said:
At first, I got this.
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \chi_{2}(n) & 1 & -1 & \Idots & -1 & 1 & -1 & \Idots & -1 \\
\hline \chi_{3}(n) & 1 & i & \Idots & 1 & -1 & -i & \Idots & -1 \\
\hline \chi_{4}(n) & 1 & -i & \Idots & -1 & -1 & i & \Idots & 1 \\
\hline \chi_{5}(n) & 1 & 1 & \Idots & 1 & 1 & 1 & \Idots & 1 \\
\hline \chi_{6}(n) & 1 & -1 & \Idots & -1 & 1 & -1 & \Idots & -1 \\
\hline \chi_{7}(n) & 1 & i & \Idots & 1 & -1 & -i & \Idots & -1 \\
\hline \chi_{8}(n) & 1 & -i & \Idots & -1 & -1 & i & \Idots & 1 \\
\hline
\end{array}

But this didn't seem to be right/correct, because I couldn't get the desired result at the end. So I made other attempts and finally got this.
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \chi_{2}(n) & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\hline \chi_{3}(n) & 1 & i & i & 1 & -1 & -i & -i & -1 \\
\hline \chi_{4}(n) & 1 & -i & i & -1 & -1 & i & -i & 1 \\
\hline \chi_{5}(n) & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\hline \chi_{6}(n) & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\hline \chi_{7}(n) & 1 & i & -i & -1 & -1 & -i & i & 1 \\
\hline \chi_{8}(n) & 1 & -i & -i & 1 & -1 & i & i & -1 \\
\hline
\end{array}

Also, the second part of the question/problem asked to verify from my table that ## \sum_{\chi \pmod {16}}\chi(3)=0 ## and ## \sum_{\chi \pmod {16}}\chi(11)=0 ##. So I think ## \sum_{\chi \pmod {16}}\chi(3)=1+(-1)+i+(-i)+1+(-1)+i+(-i)=0 ## and ## \sum_{\chi \pmod {16}}\chi(11)=1+(-1)+(-i)+i+1+(-1)+(-i)+i=0 ##. Is this right/correct?
Looks good.

There are two theorems that you could check:
1.) Characters form a group.
2.) Characters are ##\mathbb{C}-##linear independent.
 
  • Like
Likes Math100
  • #18
Are those Young Tableaux?
 
  • #19
WWGD said:
Are those Young Tableaux?
No.
 
Back
Top