In the problem of harmonic oscillator, for single mode, that is, the energy(adsbygoogle = window.adsbygoogle || []).push({});

[tex]H = \hbar\omega(n + 1/2)[/tex]

It is easy to find the average of energy by considering the density operator

[tex]<H> = \frac{Tr(He^{\beta H})}{Tr(e^{\beta H})}[/tex]

But for multimode (assume no polarization), we have to consider all modes specified with [tex]k[/tex]

[tex]H = \sum_k \hbar\omega_k(n_k + 1/2)[/tex]

So the average energy would be

[tex]<H> = \prod_k\frac{Tr(He^{\beta H})}{Tr(e^{\beta H})}

= \prod_k\frac{\sum_{k_1} \hbar\omega_{k_1}(n_{k_1} + 1/2) \exp[\beta\sum_{k_2}\hbar\omega_{k_2}(n_{k_2}+1/2)] }{\exp[\beta\sum_{k_3}\hbar\omega_{k_3}(n_{k_3}+1/2)]}

[/tex]

Since each sum and prod should have independent index so I use k, k1, k2, k3. I am very confusing how to deal with the index to get the simplifed expression.

In some textbook, it first let the partition function be

[tex]Z=Tr(e^{\beta H})[/tex]

so the energy average be

[tex]

<H> = -\frac{\partial \ln Z}{\partial \beta} = \sum_{k}\dfrac{\hbar\omega_{k}}{\exp\{\beta\hbar\omega_{k}\}-1}

[/tex]

My question is how to deal with index if I don't use the partion function.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# How to deal with index in the problem of thermal field?

**Physics Forums | Science Articles, Homework Help, Discussion**