A How to derive the quantum detailed balance condition?

  • A
  • Thread starter Thread starter lsdragon
  • Start date Start date
  • Tags Tags
    Hilbert space
lsdragon
Messages
1
Reaction score
2
TL;DR Summary
I want some help to get the definition of quantum detailed balance condition from analogy of classical detailed balance condition
In the "On The detailed balance conditions for non-Hamiltonian systems", I learned that for a Markov open quantum system to satisfying the master equation with the Liouvillian superoperators, the detailed balance condition will be

> Definition 2: The open quantum Markovian system (##dim(\mathcal{H}) < \infty##) obeys the detailed balance principle if the generator ##L## in Heisenberg picture is a normal operator in Hilbert space ##\mathcal{B}_{\rho_0}(\mathcal{H})## (see Definition 1).

>Definition 1: ##\mathcal{B}_{\rho_0}(\mathcal{H})## denotes the Hilbert space of all linear operators on the finite-dimensional Hilbert space ##\mathcal{H}## with the scalar product defined by the formula
$$\langle A, B\rangle = Tr(A^\dagger B \rho_0), A,B \in \mathcal{B}_{\rho_0}(\mathcal{H})$$
where ##\rho_0## is a fixed state (density matrix) and ## \rho_0 > 0##.

The ##L## is the adjoint operator, defined with respect to definition 1, of the Liouvillian superoperator ##\mathcal{L}##, such that
$$
\frac{d \rho}{d t} = \mathcal{L} \rho \\
\frac{d A}{d t} = L A, A\in \mathcal{B}_{\rho_0}(\mathcal{H}).
$$

The author started from the classical detailed balance condition ##p_{ij}\pi_j = p_{ji}\pi_i## and finally get to definition 2.

For me, I will write the quantum analogy of detailed balance as
$$
\langle A,L(B) \rangle = \langle B, L(A)\rangle .
$$
I can not get the normality of ##L## from the above definition.
Then, my question is that how can we get to definition 2 starting from the classical version of detailed balance?
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top