How to obtain three consecutive integers?

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Integers
Click For Summary

Homework Help Overview

The discussion revolves around finding three consecutive integers that satisfy specific divisibility conditions. The original poster introduces the integers as \( a, a+1, a+2 \) and outlines their divisibility by powers of prime numbers 5, 3, and 2, respectively.

Discussion Character

  • Exploratory, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • Participants explore the reasoning behind the choice of the primes \( (5, 3, 2) \) and question the necessity of these specific values. There is also discussion about the implications of choosing distinct primes and how it affects the solution.

Discussion Status

The conversation includes attempts to clarify the reasoning behind the selection of the primes and the conditions imposed on the integers. Some participants express uncertainty about the rationale for the distinctness of the primes and the implications for finding a solution. There is acknowledgment of the correctness of the original poster's answer, but also a desire for deeper understanding.

Contextual Notes

Participants note the constraints of the problem, including the requirement for the integers to be pairwise distinct and the implications this has on the selection of the primes. There is a suggestion that the choice of smaller primes may facilitate finding a solution without computational assistance.

Math100
Messages
823
Reaction score
234
Homework Statement
Obtain three consecutive integers, the first of which is divisible by a square, the second by a cube, and the third by a fourth power.
Relevant Equations
None.
Let ## a, a+1 ## and ## a+2 ## be the three consecutive integers.
Then
\begin{align*}
&5^{2}\mid a\implies a\equiv 0\pmod {25}\\
&3^{3}\mid (a+1)\implies a+1\equiv 0\pmod {27}\implies a\equiv 26\pmod {9}\\
&2^{4}\mid (a+2)\implies a+2\equiv 0\pmod {16}\implies a\equiv 14\pmod {16}.\\
\end{align*}
Applying the Chinese Remainder Theorem produces:
## n=25\cdot 27\cdot 16=10800 ##.
This means ## N_{1}=\frac{10800}{25}=432, N_{2}=\frac{10800}{27}=400 ## and ## N_{3}=\frac{10800}{16}=675 ##.
Now we have ## 432x_{1}\equiv 1\pmod {25}, 400x_{2}\equiv 1\pmod {27} ## and ## 675x_{3}\equiv 1\pmod {16} ##.
Observe that
\begin{align*}
&432x_{1}\equiv 1\pmod {25}\implies 7x_{1}\equiv 1\pmod {25}\\
&\implies 49x_{1}\equiv 7\pmod {25}\implies -x_{1}\equiv 7\pmod {25}\\
&\implies x_{1}\equiv 18\pmod {25},\\
&400x_{2}\equiv 1\pmod {27}\implies -5x_{2}\equiv 1\pmod {27}\\
&\implies -25x_{2}\equiv 5\pmod {27}\implies 2x_{2}\equiv 5\pmod {27}\\
&\implies 28x_{2}\equiv 70\pmod {27}\implies x_{2}\equiv 16\pmod {27},\\
&675x_{3}\equiv 1\pmod {16}\implies 3x_{3}\equiv 1\pmod {16}\\
&\implies 15x_{3}\equiv 5\pmod {16}\implies -x_{3}\equiv 5\pmod {16}\\
&\implies x_{3}\equiv 11\pmod {16}.\\
\end{align*}
Since ## x_{1}=18, x_{2}=16 ## and ## x_{3}=11 ##,
it follows that ## x\equiv (0+26\cdot 400\cdot 16+14\cdot 675\cdot 11)\pmod {10800}\equiv 270350\pmod {10800}\equiv 350\pmod {10800} ##.
Thus, ## a=350, a+1=351 ## and ## a+2=352 ##.
Therefore, the three consecutive integers are ## 350, 351 ## and ## 352 ##.
 
Physics news on Phys.org
The answer is correct, but how did you come to choose ##(5,3,2)##? And there is a typo in the second line where you wrote ##\pmod 9## instead of ##\pmod{27}.##
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
The answer is correct, but how did you come to choose ##(5,3,2)##? And there is a typo in the second line where you wrote ##\pmod 9## instead of ##\pmod{27}.##
I chose ## (5, 3, 2) ## from the book's answer, since it says ## 5^{2}\mid 350, 3^{3}\mid 351 ## and ## 2^{4}\mid 352 ##. But do you know why it should be ## (5, 3, 2) ##? Because honestly, I do not know why. It seems like because all ## 2, 3 ## and ## 5 ## are prime numbers.
 
Math100 said:
I chose ## (5, 3, 2) ## from the book's answer, since it says ## 5^{2}\mid 350, 3^{3}\mid 351 ## and ## 2^{4}\mid 352 ##. But do you know why it should be ## (5, 3, 2) ##? Because honestly, I do not know why. It seems like because all ## 2, 3 ## and ## 5 ## are prime numbers.
We are asked to find ##r^2\,|\,a\, , \,s^3\,|\,(a+1)\,|\,t^4\,|\,(a+2).##

I wonder why they all have to be pairwise distinct. I assume there is a reason, but I haven't looked into it. If so, then ##r,s,t## shouldn't be too far apart to obtain a solution that can be computed without computers. It makes sense to choose ##t## as small as possible in order to keep ##a## small. That gives us ##t^4=16\,|\,(a+2).## Then ##s=3## is the next small number to keep ##s^3## and ##a## possibly small. The only question left is then, should we choose ##r=4## or ##r=5?## But from ##r=4## we would get ##16|a## and ##16|(a+2)## which is impossible.

So ##(5,3,2)## is the smallest possible triple with distinct numbers. And it worked. There are probably more solutions. It is just the smallest one.
 
  • Like
Likes   Reactions: Math100

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K