MHB How to Solve for \(x\) and \(y\) in a System of Linear ODEs?

kalish1
Messages
79
Reaction score
0
I want to solve for $x$ and $y$ from the equation $$\frac{dx}{dt} + \frac{dy}{dt}=a-(b+c+d)y-bx.$$

What is the best strategy?
 
Physics news on Phys.org
kalish said:
I want to solve for $x$ and $y$ from the equation $$\frac{dx}{dt} + \frac{dy}{dt}=a-(b+c+d)y-bx.$$

What is the best strategy?

You have two unknown function x(*) and y(*) and only one equation. That means that You can find x(*) as function of y(*) and y'(*) or vice versa, not both x(*) and y(*)...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
You have two unknown function x(*) and y(*) and only one equation. That means that You can find x(*) as function of y(*) and y'(*) or vice versa, not both x(*) and y(*)...

Kind regards

$\chi$ $\sigma$

$1.$ I solved for $U$.

$2.$ Then I solved the equation for $V$.

$3.$ Now I am plugging in the expression for $U$ into the equation for $V$ (because it looks easier than plugging in the other way around).

Shouldn't this give me a solvable equation for $V$, thus giving $V$, and then let me plug back into the main equation to get $U$??
 
kalish said:
$1.$ I solved for $U$.

$2.$ Then I solved the equation for $V$.

$3.$ Now I am plugging in the expression for $U$ into the equation for $V$ (because it looks easier than plugging in the other way around).

Shouldn't this give me a solvable equation for $V$, thus giving $V$, and then let me plug back into the main equation to get $U$??

Could you please explain what $U$ and $V$ are? I think it'd also be terrific if you could please provide more context for this problem. How did this problem come to you? Is there any other information you have?
 
Ackbach said:
Could you please explain what $U$ and $V$ are? I think it'd also be terrific if you could please provide more context for this problem. How did this problem come to you? Is there any other information you have?

Sure. I have provided the full details in the following 3 links:
differential equations - Solution to system of nonlinear ODEs - Mathematics Stack Exchange
differential equations - System of $2$ nonlinear DEs - Mathematics Stack Exchange
differential equations - Solving a system of linear ODEs - Mathematics Stack Exchange

People have largely been unable to help. I hope you can help.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top