- #1

karush

Gold Member

MHB

- 3,269

- 5

$\textsf{i.7 verify that the given function is a solution} $

\begin{align*}\displaystyle

u_{xx}+u_{yy}+u_{zz}&=0\\

u=\phi(x,y,z)&=(x^2 + y^2 +z^2)^{-1/2}\\

(x,y,z)&\ne(0,0,0)

\end{align*}

ok there is no book answer

$\tiny{Elementary \, Differential \, Equations \, Boundary \, Value \, Problems \quad Boyce/Diprinaia \quad 1965}$

\begin{align*}\displaystyle

u_{xx}+u_{yy}+u_{zz}&=0\\

u=\phi(x,y,z)&=(x^2 + y^2 +z^2)^{-1/2}\\

(x,y,z)&\ne(0,0,0)

\end{align*}

ok there is no book answer

$\tiny{Elementary \, Differential \, Equations \, Boundary \, Value \, Problems \quad Boyce/Diprinaia \quad 1965}$

Last edited: