MHB Identity Proof: (A-B)-C=A-(B∪C)

Click For Summary
To prove the identity (A-B)-C=A-(B∪C), the discussion highlights the use of set identities, specifically A-B=A\bar{B} and \overline{B∪C}=\bar{B}\bar{C}. The proof involves manipulating these identities to show the equivalence. The conversation emphasizes the importance of understanding set operations and their properties, including commutativity and associativity. Participants are encouraged to apply the provided identities to validate the equality. This exploration of set theory identities is crucial for grasping advanced concepts in mathematics.
gicm
Messages
1
Reaction score
0
Show that(A-B)-C=A-(BUC)
 
Physics news on Phys.org
This can be shown using identities on sets. Two identities are: $A-B=A\bar{B}$ and $\overline{B\cup C}=\bar{B}\bar{C}$. Here $\bar{A}$ denotes the complement of $A$, and I skip intersection, i.e., I write $AB$ for $A\cap B$. There are numerous other identities on sets, such as commutativity and associativity of intersection and union, laws involving the empty set and so on. Can you use the ones I provided to prove your equality?
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 3 ·
Replies
3
Views
129K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
21
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K