I've been able to prove that the set {8n+7} has infinite primes by manipulating Fermat's Theorem, but I'm trying to reprove it using quadratic residue and Legendre Polynomials.(adsbygoogle = window.adsbygoogle || []).push({});

I've been able to show that for p=8n+7, (2/p)=1 and (-1,p)=-1

So it follows that (-2/p)=-1. And that (-2/p)=1 iff p congruent to 1 or 5 mod 8.

any ideas how to extend that to the final proof?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Infinite primes using Quadratic Residues

**Physics Forums | Science Articles, Homework Help, Discussion**