Integrating on an infinite domain

Click For Summary

Discussion Overview

The discussion revolves around the integration of the expression involving the Bessel function of order 1 and its Laplace transform. Participants explore the mathematical properties and representations of the Bessel function in the context of integration over an infinite domain.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents an integral involving the Bessel function and expresses curiosity about the absence of the variable z in the resulting expression.
  • Another participant provides a detailed evaluation of the Laplace transform of the Bessel function, using integral representations and contour integration techniques.
  • There is mention of a potential typo in a previous post, which led to further exploration of the Laplace transform of the Bessel equation.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the integration process or the implications of the expressions presented. Multiple viewpoints and methods are discussed without resolution.

Contextual Notes

Some participants note potential typos and the need for clarification on the expressions used, indicating that the discussion may depend on precise definitions and representations of the Bessel function and its transforms.

Dustinsfl
Messages
2,217
Reaction score
5
How can I integrate this expression:
\[
\int_0^{\infty} \mathcal{J}_1(kR)e^{-kz}dk = \frac{1}{R} \left[1 - \frac{z^2}{\sqrt{R^2 + z^2}} \right]
\]
where \(\mathcal{J}_1\) is the Bessel function of order 1.
 
Physics news on Phys.org
dwsmith said:
How can I integrate this expression:
\[
\int_0^{\infty} \mathcal{J}_1(kR)e^{-kz}dk = \frac{1}{R} \left[1 - \frac{z^2}{\sqrt{R^2 + z^2}} \right]
\]
where \(\mathcal{J}_1\) is the Bessel function of order 1.

It is remarkable the fact that in the right term the variable z, that exists in the left term, doesn't exists (Dull) ...

Any way... a general formula does exist...

$\displaystyle \mathcal{L} \{ a^{n}\ J_{n} (a\ t)\} = \frac{(\sqrt{s^{2}+ a^{2}} - s)^{n}}{\sqrt{s^{2}-a^{2}}}\ (1)$

Kind regards

$\chi$ $\sigma$
 
You can evaluate the Laplace transform of the Bessel function of the first kind of positive integer order by using the integral representation

$ \displaystyle J_{n}(bx) = \frac{1}{\pi} \int_{0}^{\pi} \cos(n \theta -bx \sin \theta) \ d \theta = \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(n \theta - b x \sin \theta)} d \theta $$ \displaystyle\int_{0}^{\infty} J_{n}(bx) e^{-ax} \ dx = \displaystyle \frac{1}{2 \pi} \int_{0}^{\infty} \int_{-\pi}^{\pi} e^{i(n \theta -bx \sin \theta)} e^{-ax} \ d \theta \ dx$

$ = \displaystyle \frac{1}{2 \pi} \int_{-\pi}^{\pi} \int_{0}^{\infty} e^{i n \theta} e^{-(a+ib \sin \theta)x} \ dx \ d \theta = \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{i n \theta}}{a + ib \sin \theta} d \theta$

$ = \displaystyle\frac{1}{2 \pi} \int_{|z|=1} \frac{z^{n}}{a+\frac{b}{2} \left(z-\frac{1}{z} \right)} \frac{dz} {iz} = \frac{1}{\pi i} \int_{|z|=1} \frac{z^{n}}{bz^{2}+2az-b} \ dz$

$ = \displaystyle \frac{1}{\pi i} \int_{|z|=1} \frac{z^{n}}{b(z-z_{1})(z-z_{2})} \ dz $

where $\displaystyle z_{1} = -\frac{a}{b} + \frac{\sqrt{a^{2}+b^{2}}}{b}$ and $\displaystyle z_{2} = -\frac{a}{b} - \frac{\sqrt{a^{2}+b^{2}}}{b}$Only $z_{1}$ is inside the unit circle.So $ \displaystyle \int_{0}^{\infty} J_{n} (bx) e^{-ax} \ dx = \frac{1}{\pi i} 2 \pi i \ \text{Res} \left[ \frac{z^{n}}{bz^{2}+2az-b}, z_{1} \right]$

$ \displaystyle = \lim_{z \to z_{1}} \frac{z^{n}}{bz+a} = \frac{(\sqrt{a^{2}+b^{2}}-a)^{n}}{b^{n}\sqrt{a^{2}+b^{2}}}$
 
Last edited:
@RandomVariable,
I actually read your post on math.SX because ChiSigma's has a typo with the minus. His typo had my googling lapace transform of the Bessel Eq and I found yours on SX prior to your post here.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K