MHB Integrating on an infinite domain

Click For Summary
The discussion focuses on integrating the expression involving the Bessel function of order 1 and an exponential decay term. The integral is evaluated, leading to a result that notably omits the variable z in the right-hand expression. A general formula for the Laplace transform of Bessel functions is presented, highlighting its application in evaluating the integral. The conversation also references a method using the integral representation of the Bessel function and contour integration techniques. The exchange illustrates the complexity of integrating such expressions and the interconnectedness of mathematical concepts.
Dustinsfl
Messages
2,217
Reaction score
5
How can I integrate this expression:
\[
\int_0^{\infty} \mathcal{J}_1(kR)e^{-kz}dk = \frac{1}{R} \left[1 - \frac{z^2}{\sqrt{R^2 + z^2}} \right]
\]
where \(\mathcal{J}_1\) is the Bessel function of order 1.
 
Physics news on Phys.org
dwsmith said:
How can I integrate this expression:
\[
\int_0^{\infty} \mathcal{J}_1(kR)e^{-kz}dk = \frac{1}{R} \left[1 - \frac{z^2}{\sqrt{R^2 + z^2}} \right]
\]
where \(\mathcal{J}_1\) is the Bessel function of order 1.

It is remarkable the fact that in the right term the variable z, that exists in the left term, doesn't exists (Dull) ...

Any way... a general formula does exist...

$\displaystyle \mathcal{L} \{ a^{n}\ J_{n} (a\ t)\} = \frac{(\sqrt{s^{2}+ a^{2}} - s)^{n}}{\sqrt{s^{2}-a^{2}}}\ (1)$

Kind regards

$\chi$ $\sigma$
 
You can evaluate the Laplace transform of the Bessel function of the first kind of positive integer order by using the integral representation

$ \displaystyle J_{n}(bx) = \frac{1}{\pi} \int_{0}^{\pi} \cos(n \theta -bx \sin \theta) \ d \theta = \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(n \theta - b x \sin \theta)} d \theta $$ \displaystyle\int_{0}^{\infty} J_{n}(bx) e^{-ax} \ dx = \displaystyle \frac{1}{2 \pi} \int_{0}^{\infty} \int_{-\pi}^{\pi} e^{i(n \theta -bx \sin \theta)} e^{-ax} \ d \theta \ dx$

$ = \displaystyle \frac{1}{2 \pi} \int_{-\pi}^{\pi} \int_{0}^{\infty} e^{i n \theta} e^{-(a+ib \sin \theta)x} \ dx \ d \theta = \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{i n \theta}}{a + ib \sin \theta} d \theta$

$ = \displaystyle\frac{1}{2 \pi} \int_{|z|=1} \frac{z^{n}}{a+\frac{b}{2} \left(z-\frac{1}{z} \right)} \frac{dz} {iz} = \frac{1}{\pi i} \int_{|z|=1} \frac{z^{n}}{bz^{2}+2az-b} \ dz$

$ = \displaystyle \frac{1}{\pi i} \int_{|z|=1} \frac{z^{n}}{b(z-z_{1})(z-z_{2})} \ dz $

where $\displaystyle z_{1} = -\frac{a}{b} + \frac{\sqrt{a^{2}+b^{2}}}{b}$ and $\displaystyle z_{2} = -\frac{a}{b} - \frac{\sqrt{a^{2}+b^{2}}}{b}$Only $z_{1}$ is inside the unit circle.So $ \displaystyle \int_{0}^{\infty} J_{n} (bx) e^{-ax} \ dx = \frac{1}{\pi i} 2 \pi i \ \text{Res} \left[ \frac{z^{n}}{bz^{2}+2az-b}, z_{1} \right]$

$ \displaystyle = \lim_{z \to z_{1}} \frac{z^{n}}{bz+a} = \frac{(\sqrt{a^{2}+b^{2}}-a)^{n}}{b^{n}\sqrt{a^{2}+b^{2}}}$
 
Last edited:
@RandomVariable,
I actually read your post on math.SX because ChiSigma's has a typo with the minus. His typo had my googling lapace transform of the Bessel Eq and I found yours on SX prior to your post here.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
19
Views
3K