Integrating on an infinite domain

Click For Summary
SUMMARY

The discussion centers on the integration of the expression involving the Bessel function of order 1, specifically the integral $\int_0^{\infty} \mathcal{J}_1(kR)e^{-kz}dk$, which evaluates to $\frac{1}{R} \left[1 - \frac{z^2}{\sqrt{R^2 + z^2}} \right]$. Participants highlight the absence of the variable z in the right term and reference a general formula for the Laplace transform of the Bessel function, $\mathcal{L} \{ a^{n}\ J_{n} (a\ t)\} = \frac{(\sqrt{s^{2}+ a^{2}} - s)^{n}}{\sqrt{s^{2}-a^{2}}}$. The discussion also includes an integral representation of the Bessel function and its evaluation using residue calculus.

PREREQUISITES
  • Understanding of Bessel functions, specifically $\mathcal{J}_1$
  • Familiarity with Laplace transforms and their properties
  • Knowledge of complex analysis, particularly residue theorem
  • Proficiency in evaluating improper integrals
NEXT STEPS
  • Study the properties and applications of Bessel functions in mathematical physics
  • Learn about the derivation and applications of Laplace transforms in engineering
  • Explore complex analysis techniques, focusing on residue calculus
  • Investigate the integral representations of special functions and their significance
USEFUL FOR

Mathematicians, physicists, and engineers who require a deeper understanding of Bessel functions and their applications in solving differential equations and integrals.

Dustinsfl
Messages
2,217
Reaction score
5
How can I integrate this expression:
\[
\int_0^{\infty} \mathcal{J}_1(kR)e^{-kz}dk = \frac{1}{R} \left[1 - \frac{z^2}{\sqrt{R^2 + z^2}} \right]
\]
where \(\mathcal{J}_1\) is the Bessel function of order 1.
 
Physics news on Phys.org
dwsmith said:
How can I integrate this expression:
\[
\int_0^{\infty} \mathcal{J}_1(kR)e^{-kz}dk = \frac{1}{R} \left[1 - \frac{z^2}{\sqrt{R^2 + z^2}} \right]
\]
where \(\mathcal{J}_1\) is the Bessel function of order 1.

It is remarkable the fact that in the right term the variable z, that exists in the left term, doesn't exists (Dull) ...

Any way... a general formula does exist...

$\displaystyle \mathcal{L} \{ a^{n}\ J_{n} (a\ t)\} = \frac{(\sqrt{s^{2}+ a^{2}} - s)^{n}}{\sqrt{s^{2}-a^{2}}}\ (1)$

Kind regards

$\chi$ $\sigma$
 
You can evaluate the Laplace transform of the Bessel function of the first kind of positive integer order by using the integral representation

$ \displaystyle J_{n}(bx) = \frac{1}{\pi} \int_{0}^{\pi} \cos(n \theta -bx \sin \theta) \ d \theta = \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(n \theta - b x \sin \theta)} d \theta $$ \displaystyle\int_{0}^{\infty} J_{n}(bx) e^{-ax} \ dx = \displaystyle \frac{1}{2 \pi} \int_{0}^{\infty} \int_{-\pi}^{\pi} e^{i(n \theta -bx \sin \theta)} e^{-ax} \ d \theta \ dx$

$ = \displaystyle \frac{1}{2 \pi} \int_{-\pi}^{\pi} \int_{0}^{\infty} e^{i n \theta} e^{-(a+ib \sin \theta)x} \ dx \ d \theta = \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{i n \theta}}{a + ib \sin \theta} d \theta$

$ = \displaystyle\frac{1}{2 \pi} \int_{|z|=1} \frac{z^{n}}{a+\frac{b}{2} \left(z-\frac{1}{z} \right)} \frac{dz} {iz} = \frac{1}{\pi i} \int_{|z|=1} \frac{z^{n}}{bz^{2}+2az-b} \ dz$

$ = \displaystyle \frac{1}{\pi i} \int_{|z|=1} \frac{z^{n}}{b(z-z_{1})(z-z_{2})} \ dz $

where $\displaystyle z_{1} = -\frac{a}{b} + \frac{\sqrt{a^{2}+b^{2}}}{b}$ and $\displaystyle z_{2} = -\frac{a}{b} - \frac{\sqrt{a^{2}+b^{2}}}{b}$Only $z_{1}$ is inside the unit circle.So $ \displaystyle \int_{0}^{\infty} J_{n} (bx) e^{-ax} \ dx = \frac{1}{\pi i} 2 \pi i \ \text{Res} \left[ \frac{z^{n}}{bz^{2}+2az-b}, z_{1} \right]$

$ \displaystyle = \lim_{z \to z_{1}} \frac{z^{n}}{bz+a} = \frac{(\sqrt{a^{2}+b^{2}}-a)^{n}}{b^{n}\sqrt{a^{2}+b^{2}}}$
 
Last edited:
@RandomVariable,
I actually read your post on math.SX because ChiSigma's has a typo with the minus. His typo had my googling lapace transform of the Bessel Eq and I found yours on SX prior to your post here.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
19
Views
3K