MHB Intuitive Proof: $\omega \times \omega$ is Countable

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Set
Click For Summary
The discussion centers on proving that the set $\omega \times \omega$ is countable by establishing a bijection with $\omega$. The intuitive proof involves defining a function that maps pairs of natural numbers to single natural numbers, demonstrating both injectivity and surjectivity. The function $J(m,n) = T(m+n) + n$ is shown to be one-to-one and onto, confirming that every pair of natural numbers corresponds uniquely to a natural number. The participants also explore the relationship between this proof and other methods of demonstrating the countability of $\omega \times \omega$. This establishes a clear understanding of the countability of the Cartesian product of natural numbers.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Proposition:
The set $\omega \times \omega$ is equinumerous with $\omega$, i.e. the set $\omega \times \omega$ is countable.

"Intuitive Proof"

$$\mathbb{N}^2=\{ (n,m): n,m \in \mathbb{N} \}$$

View attachment 3825

$$1 \mapsto a_{11}$$
$$2 \mapsto a_{12}$$
$$3 \mapsto a_{31}$$
$$4 \mapsto a_{22}$$
$$5 \mapsto a_{13}$$
$$6 \mapsto a_{14}$$
$$7 \mapsto a_{23}$$
$$\ \ \ \ \cdots \cdots \\ \ \ \ \ \cdots \cdots \\ \ \ \ \ \cdots \cdots$$Could you explain me the intuitive proof? (Thinking)
 

Attachments

  • set_theory.png
    set_theory.png
    7.3 KB · Views: 99
Physics news on Phys.org
This process gives every pair of natural numbers a single natural number and vice versa: e.g., (1, 3) corresponds to 5. This correspondence is a bijection.
 
So do we know that it is an injection because we pair each natural number to a diferent pair of natural numbers?
Also do we know that it is a surjection because there are both infinitely many natural numbers and pairs of natural numbers, so for each pair there will be a single element that we can correspond to the pair? (Thinking)
 
Yes, pretty much.
 
Then it is given the following proof:

We define recursively the function $T: \omega \to \omega$ as follows:

$T(0)=0 \ \ \ \ \ T(n+1)=T(n)+n=1$

which has the following properties:

  • it is strictly increasing
  • it is 1-1
  • show that $(\forall y \in \omega) (\exists x \in \omega) (T(x) \leq y<T(x+1))$
We define the function $J(m,n)=T(m+n)+n (\langle m,n \rangle=m,n)$.

We will show that $J$ is 1-1 and surjective, i.e. $J: \omega \times \omega \overset{\text{surjective}}{\longrightarrow} \omega$.
  • $J$ is 1-1.

    Let $\langle m,n \rangle \neq \langle k,l \rangle , m,n,k,l \in \omega$.

    First case: $m+n=n+k$

    If we had $J(m,n)=J(k,l)$ then $T(m+n)+n=T(k+l)+l \rightarrow n=l$ and since $m+n=k+l$ we have that $m=k$ that implies that $\langle m,n \rangle= \langle k, l \rangle$, contradiction.
    Thus $J(m,n) \neq J(k,l)$.Second case: $m+n \neq k+l$

    We suppose without loss of generality that $m+n<k+l$. Then $m+n+1 \leq k+l$ and so $T(m+n+1) \leq T(k+l)$.

    We have that $J(m,n)=T(m+n)+n<T(m+n)+n+1=T(m+n+1) \leq T(k+l)<T(k+l)+l=J(k,l)$

    Thus, $J(m,n) \neq J(k,l)$.
  • Show that $J$ is surjective.
Is this proof related to the other proof? Do we have the same correspondance?
 
Last edited:
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
21
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K