MHB Intuitive Proof: $\omega \times \omega$ is Countable

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Set
Click For Summary
The discussion centers on proving that the set $\omega \times \omega$ is countable by establishing a bijection with $\omega$. The intuitive proof involves defining a function that maps pairs of natural numbers to single natural numbers, demonstrating both injectivity and surjectivity. The function $J(m,n) = T(m+n) + n$ is shown to be one-to-one and onto, confirming that every pair of natural numbers corresponds uniquely to a natural number. The participants also explore the relationship between this proof and other methods of demonstrating the countability of $\omega \times \omega$. This establishes a clear understanding of the countability of the Cartesian product of natural numbers.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Proposition:
The set $\omega \times \omega$ is equinumerous with $\omega$, i.e. the set $\omega \times \omega$ is countable.

"Intuitive Proof"

$$\mathbb{N}^2=\{ (n,m): n,m \in \mathbb{N} \}$$

View attachment 3825

$$1 \mapsto a_{11}$$
$$2 \mapsto a_{12}$$
$$3 \mapsto a_{31}$$
$$4 \mapsto a_{22}$$
$$5 \mapsto a_{13}$$
$$6 \mapsto a_{14}$$
$$7 \mapsto a_{23}$$
$$\ \ \ \ \cdots \cdots \\ \ \ \ \ \cdots \cdots \\ \ \ \ \ \cdots \cdots$$Could you explain me the intuitive proof? (Thinking)
 

Attachments

  • set_theory.png
    set_theory.png
    7.3 KB · Views: 105
Physics news on Phys.org
This process gives every pair of natural numbers a single natural number and vice versa: e.g., (1, 3) corresponds to 5. This correspondence is a bijection.
 
So do we know that it is an injection because we pair each natural number to a diferent pair of natural numbers?
Also do we know that it is a surjection because there are both infinitely many natural numbers and pairs of natural numbers, so for each pair there will be a single element that we can correspond to the pair? (Thinking)
 
Yes, pretty much.
 
Then it is given the following proof:

We define recursively the function $T: \omega \to \omega$ as follows:

$T(0)=0 \ \ \ \ \ T(n+1)=T(n)+n=1$

which has the following properties:

  • it is strictly increasing
  • it is 1-1
  • show that $(\forall y \in \omega) (\exists x \in \omega) (T(x) \leq y<T(x+1))$
We define the function $J(m,n)=T(m+n)+n (\langle m,n \rangle=m,n)$.

We will show that $J$ is 1-1 and surjective, i.e. $J: \omega \times \omega \overset{\text{surjective}}{\longrightarrow} \omega$.
  • $J$ is 1-1.

    Let $\langle m,n \rangle \neq \langle k,l \rangle , m,n,k,l \in \omega$.

    First case: $m+n=n+k$

    If we had $J(m,n)=J(k,l)$ then $T(m+n)+n=T(k+l)+l \rightarrow n=l$ and since $m+n=k+l$ we have that $m=k$ that implies that $\langle m,n \rangle= \langle k, l \rangle$, contradiction.
    Thus $J(m,n) \neq J(k,l)$.Second case: $m+n \neq k+l$

    We suppose without loss of generality that $m+n<k+l$. Then $m+n+1 \leq k+l$ and so $T(m+n+1) \leq T(k+l)$.

    We have that $J(m,n)=T(m+n)+n<T(m+n)+n+1=T(m+n+1) \leq T(k+l)<T(k+l)+l=J(k,l)$

    Thus, $J(m,n) \neq J(k,l)$.
  • Show that $J$ is surjective.
Is this proof related to the other proof? Do we have the same correspondance?
 
Last edited:
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K