MHB Intuitive Proof: $\omega \times \omega$ is Countable

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Set
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Proposition:
The set $\omega \times \omega$ is equinumerous with $\omega$, i.e. the set $\omega \times \omega$ is countable.

"Intuitive Proof"

$$\mathbb{N}^2=\{ (n,m): n,m \in \mathbb{N} \}$$

View attachment 3825

$$1 \mapsto a_{11}$$
$$2 \mapsto a_{12}$$
$$3 \mapsto a_{31}$$
$$4 \mapsto a_{22}$$
$$5 \mapsto a_{13}$$
$$6 \mapsto a_{14}$$
$$7 \mapsto a_{23}$$
$$\ \ \ \ \cdots \cdots \\ \ \ \ \ \cdots \cdots \\ \ \ \ \ \cdots \cdots$$Could you explain me the intuitive proof? (Thinking)
 

Attachments

  • set_theory.png
    set_theory.png
    7.3 KB · Views: 94
Physics news on Phys.org
This process gives every pair of natural numbers a single natural number and vice versa: e.g., (1, 3) corresponds to 5. This correspondence is a bijection.
 
So do we know that it is an injection because we pair each natural number to a diferent pair of natural numbers?
Also do we know that it is a surjection because there are both infinitely many natural numbers and pairs of natural numbers, so for each pair there will be a single element that we can correspond to the pair? (Thinking)
 
Yes, pretty much.
 
Then it is given the following proof:

We define recursively the function $T: \omega \to \omega$ as follows:

$T(0)=0 \ \ \ \ \ T(n+1)=T(n)+n=1$

which has the following properties:

  • it is strictly increasing
  • it is 1-1
  • show that $(\forall y \in \omega) (\exists x \in \omega) (T(x) \leq y<T(x+1))$
We define the function $J(m,n)=T(m+n)+n (\langle m,n \rangle=m,n)$.

We will show that $J$ is 1-1 and surjective, i.e. $J: \omega \times \omega \overset{\text{surjective}}{\longrightarrow} \omega$.
  • $J$ is 1-1.

    Let $\langle m,n \rangle \neq \langle k,l \rangle , m,n,k,l \in \omega$.

    First case: $m+n=n+k$

    If we had $J(m,n)=J(k,l)$ then $T(m+n)+n=T(k+l)+l \rightarrow n=l$ and since $m+n=k+l$ we have that $m=k$ that implies that $\langle m,n \rangle= \langle k, l \rangle$, contradiction.
    Thus $J(m,n) \neq J(k,l)$.Second case: $m+n \neq k+l$

    We suppose without loss of generality that $m+n<k+l$. Then $m+n+1 \leq k+l$ and so $T(m+n+1) \leq T(k+l)$.

    We have that $J(m,n)=T(m+n)+n<T(m+n)+n+1=T(m+n+1) \leq T(k+l)<T(k+l)+l=J(k,l)$

    Thus, $J(m,n) \neq J(k,l)$.
  • Show that $J$ is surjective.
Is this proof related to the other proof? Do we have the same correspondance?
 
Last edited:
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
15
Views
2K
Replies
3
Views
2K
Replies
18
Views
1K
Replies
9
Views
2K
Replies
2
Views
3K
Replies
3
Views
2K
Replies
1
Views
2K
Back
Top