Intuitive Proof: $\omega \times \omega$ is Countable

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Set
Click For Summary

Discussion Overview

The discussion centers around the proposition that the set $\omega \times \omega$ is countable, exploring intuitive proofs and formal functions that establish a bijection between pairs of natural numbers and natural numbers themselves. The scope includes mathematical reasoning and proofs related to set theory.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • One participant proposes that the set $\omega \times \omega$ can be shown to be countable through a bijection, providing an initial mapping of pairs of natural numbers to single natural numbers.
  • Another participant questions the injection and surjection properties of the proposed mapping, suggesting that each natural number corresponds to a unique pair and that there are infinitely many natural numbers available for pairing.
  • A later reply affirms the understanding of the mapping as a bijection.
  • Further, a recursive function $T$ is defined, with properties that suggest it is strictly increasing and one-to-one, leading to a proposed function $J(m,n)$ that aims to demonstrate both injectivity and surjectivity.
  • Participants discuss whether the proof involving the function $J$ is related to the initial intuitive proof and if it represents the same correspondence.

Areas of Agreement / Disagreement

Participants generally agree on the idea that $\omega \times \omega$ is countable and that a bijection can be established, but there are varying levels of understanding regarding the specifics of the proofs and their relationships. The discussion remains somewhat unresolved regarding the connection between the intuitive proof and the formal proof involving the function $J$.

Contextual Notes

Some participants express uncertainty about the properties of the mappings and the implications of the recursive function. There are also unresolved questions about the relationship between different proofs presented.

Who May Find This Useful

This discussion may be useful for those interested in set theory, particularly in understanding countability and bijections between sets, as well as for individuals exploring different proof techniques in mathematics.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Proposition:
The set $\omega \times \omega$ is equinumerous with $\omega$, i.e. the set $\omega \times \omega$ is countable.

"Intuitive Proof"

$$\mathbb{N}^2=\{ (n,m): n,m \in \mathbb{N} \}$$

View attachment 3825

$$1 \mapsto a_{11}$$
$$2 \mapsto a_{12}$$
$$3 \mapsto a_{31}$$
$$4 \mapsto a_{22}$$
$$5 \mapsto a_{13}$$
$$6 \mapsto a_{14}$$
$$7 \mapsto a_{23}$$
$$\ \ \ \ \cdots \cdots \\ \ \ \ \ \cdots \cdots \\ \ \ \ \ \cdots \cdots$$Could you explain me the intuitive proof? (Thinking)
 

Attachments

  • set_theory.png
    set_theory.png
    7.3 KB · Views: 113
Physics news on Phys.org
This process gives every pair of natural numbers a single natural number and vice versa: e.g., (1, 3) corresponds to 5. This correspondence is a bijection.
 
So do we know that it is an injection because we pair each natural number to a diferent pair of natural numbers?
Also do we know that it is a surjection because there are both infinitely many natural numbers and pairs of natural numbers, so for each pair there will be a single element that we can correspond to the pair? (Thinking)
 
Yes, pretty much.
 
Then it is given the following proof:

We define recursively the function $T: \omega \to \omega$ as follows:

$T(0)=0 \ \ \ \ \ T(n+1)=T(n)+n=1$

which has the following properties:

  • it is strictly increasing
  • it is 1-1
  • show that $(\forall y \in \omega) (\exists x \in \omega) (T(x) \leq y<T(x+1))$
We define the function $J(m,n)=T(m+n)+n (\langle m,n \rangle=m,n)$.

We will show that $J$ is 1-1 and surjective, i.e. $J: \omega \times \omega \overset{\text{surjective}}{\longrightarrow} \omega$.
  • $J$ is 1-1.

    Let $\langle m,n \rangle \neq \langle k,l \rangle , m,n,k,l \in \omega$.

    First case: $m+n=n+k$

    If we had $J(m,n)=J(k,l)$ then $T(m+n)+n=T(k+l)+l \rightarrow n=l$ and since $m+n=k+l$ we have that $m=k$ that implies that $\langle m,n \rangle= \langle k, l \rangle$, contradiction.
    Thus $J(m,n) \neq J(k,l)$.Second case: $m+n \neq k+l$

    We suppose without loss of generality that $m+n<k+l$. Then $m+n+1 \leq k+l$ and so $T(m+n+1) \leq T(k+l)$.

    We have that $J(m,n)=T(m+n)+n<T(m+n)+n+1=T(m+n+1) \leq T(k+l)<T(k+l)+l=J(k,l)$

    Thus, $J(m,n) \neq J(k,l)$.
  • Show that $J$ is surjective.
Is this proof related to the other proof? Do we have the same correspondance?
 
Last edited:

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 9 ·
Replies
9
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K