Graduate The Effect of Time-Varying Electric Fields on a 2-Level Ion System

  • Thread starter Thread starter Malamala
  • Start date Start date
  • Tags Tags
    Field Ion Time
Click For Summary
SUMMARY

The discussion focuses on the behavior of a two-level ion system subjected to a time-varying electric field, specifically in the context of a Paul trap. It is established that the problem can be separated into center of mass motion and internal two-level system motion, provided the electric field is homogeneous. Inhomogeneity in the electric field can lead to differential forces on the electron cloud and ion core, potentially complicating the system's dynamics. The Stark effect is noted as a factor that can usually be neglected in typical Paul trap applications, except in precision scenarios like atomic clocks.

PREREQUISITES
  • Understanding of two-level quantum systems
  • Knowledge of electric fields and their effects on charged particles
  • Familiarity with Paul traps and their operational principles
  • Basic concepts of the Stark effect in quantum mechanics
NEXT STEPS
  • Research the implications of the Stark effect in precision measurements
  • Explore the design and functionality of Paul traps in quantum systems
  • Study the effects of inhomogeneous electric fields on charged particles
  • Investigate the relationship between oscillatory electric fields and electromagnetic radiation
USEFUL FOR

Physicists, quantum mechanics researchers, and engineers working with ion traps or studying the effects of electric fields on atomic systems will benefit from this discussion.

Malamala
Messages
348
Reaction score
28
Hello! If I have an ion which can be treated as a 2 level system, in a time varying electric field (the variation of the field doesn't need to be on or close to resonance, but for simplicity we can assume it is an oscillatory field) can I simply separate the problem into a center of mass motion and an internal 2 level system motion. Basically the ion would move up and down under the influence of the field, but in the ion's rest frame we would just have a normal time varying field, as if the ion wouldn't move at all. Would this work or am I missing some coupling between the internal and external degrees of freedom? Thank you!
 
Physics news on Phys.org
You mean like in a Paul trap?
 
Yes, it would work as long as the electric field is homogenous, meaning, the value and direction of the electric field is the same everywhere where the ion is embedded. If there is inhomogeneity, then electron cloud and ion core may be pulled differently.
If electric field is very strong, then you may have other effects.
 
LuisP said:
Yes, it would work as long as the electric field is homogenous, meaning, the value and direction of the electric field is the same everywhere where the ion is embedded. If there is inhomogeneity, then electron cloud and ion core may be pulled differently.
If electric field is very strong, then you may have other effects.
@DrClaude yes. My question was in general but indeed that would be a physical implementations of the system.

@LuisP I assume you mean homogenous in space, as in for a given moment in time, the field in a region completely enclosing the ion is constant in space? What would be the requirements for this? Is a light wavelength much bigger than the atomic size enough?
 
Malamala said:
@DrClaude yes. My question was in general but indeed that would be a physical implementations of the system.
I was asking because the answer of course depends on the strength of the field. There is of course the Stark effect, but for a typical Paul trap it can be neglected in most cases (an exception might be if you are using the ion as an atomic clock, where even small effects must be accounted for).
Malamala said:
@LuisP I assume you mean homogenous in space, as in for a given moment in time, the field in a region completely enclosing the ion is constant in space? What would be the requirements for this? Is a light wavelength much bigger than the atomic size enough?
Are you talking about electric fields (as mentioned in the OP) or electromagnetic fields? These are different beasts. (To be clear: an electric field is what is created by two charged electrodes, while people usually use "electromagnetic field" to talk about electromagnetic radiation.)
 
DrClaude said:
I was asking because the answer of course depends on the strength of the field. There is of course the Stark effect, but for a typical Paul trap it can be neglected in most cases (an exception might be if you are using the ion as an atomic clock, where even small effects must be accounted for).
Are you talking about electric fields (as mentioned in the OP) or electromagnetic fields? These are different beasts. (To be clear: an electric field is what is created by two charged electrodes, while people usually use "electromagnetic field" to talk about electromagnetic radiation.)
Well in the original post I mentioned an oscillatory electric field (like sinusoidal). You can't have this without a sinusoidal magnetic field being created, right? So the ion will see both anyway. What I had in mind specifically was something along the line of having 2 plates to which I apply a time varying field (with a phase difference of ##\pi## between them) at a given frequency (on the order of kHz). So basically it is like an RF field applied to the ion. I am not sure I totally understand the difference you make between the 2 cases.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
846
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K