MHB Is Function $f$ Convex if its Hessian Matrix is Positive Semidefinite?

  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
A twice differentiable function f: ℝⁿ → ℝ with an everywhere positive semidefinite Hessian matrix is indeed convex. The positive semidefiniteness of the Hessian indicates that the second derivative does not produce negative curvature, which is a key characteristic of convex functions. This means that for any two points in the domain, the line segment connecting them lies above the graph of the function. The lack of responses suggests that the problem may be challenging or that participants are still considering their approaches. The solution provided offers clarity on the relationship between the Hessian and convexity.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Let $f : \Bbb R^n \to \Bbb R$ be twice differentiable function whose Hessian matrix is everywhere positive semidefinite. Show that $f$ is convex.
-----

 
Physics news on Phys.org
No one answered this week’s problem. You can read my solution below.

For fixed $\mathbf{x}, \mathbf{y}\in \Bbb R^n$, define $g(t;\mathbf{x}, \mathbf{y}) = f(\mathbf{x}+ t\mathbf{y})$, for all $t\in\Bbb R$. If $H_{\mathbf{z}}(f)$ denotes the Hessian matrix evaluated at $\mathbf{z}$, then $g’’(t;\mathbf{x}, \mathbf{y}) = \frac{1}{2}\mathbf{y}^TH_{\mathbf{x} + t\mathbf{y}}(f)\mathbf{y}$, which is nonnegative by the positive semidefiniteness of the Hessian matrix. Therefore $g(t;\mathbf{x},\mathbf{y})$ is convex. Since $\mathbf{x}$ and $\mathbf{y}$ are arbitrary, it follows that $f$ is convex. Indeed, for all $\mathbf{x},\mathbf{y}\in \Bbb R^n$ and $t\in [0,1]$, $$f((1-t)\mathbf{x} + t\mathbf{y}) = f(\mathbf{x} + t(\mathbf{y}-\mathbf{x})) = g(t; \mathbf{x},
\mathbf{y}-\mathbf{x}) \le (1-t) g(0;\mathbf{x}, \mathbf{y}-\mathbf{x}) + t g(1; \mathbf{y} - \mathbf{x}) = (1-t) f(\mathbf{x}) + t f(\mathbf{y})$$ as desired.
 

Similar threads

Replies
1
Views
3K
Replies
1
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
3K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K