MHB Is \mathcal{P}(A)\times\mathcal{P}(A) Equinumerous with \mathcal{P}(A)?

  • Thread starter Thread starter Andrei1
  • Start date Start date
  • Tags Tags
    Infinite Sets
Click For Summary
The discussion centers on the relationship between the power set of a set A, denoted as \mathcal{P}(A), and the Cartesian product of its power set with itself, \mathcal{P}(A) \times \mathcal{P}(A). It is established that if A has at least two elements and A × A is equinumerous with A, then \mathcal{P}(A) \times \mathcal{P}(A) is also equinumerous with \mathcal{P}(A). The Schröder–Bernstein theorem is suggested as a method to prove this relationship by constructing bijective maps. Additionally, it is noted that if A is finite, the condition A × A ∼ A cannot hold. The discussion ultimately reinforces the equivalence of the power set and its Cartesian product under the specified conditions.
Andrei1
Messages
36
Reaction score
0
Suppose $$A$$ is a set with at least two elements and $$A\times A\sim A.$$ Then $$\mathcal{P}(A)\times\mathcal{P}(A)\sim\mathcal{P}(A).$$

My attempt: I know that $$\mathcal{P}((A\times A)\cup A)\sim\mathcal{P}(A\times A)\times\mathcal{P}(A)\sim\mathcal{P}(A) \times \mathcal{P}(A).$$ How to prove that $$\mathcal{P}(A)\sim \mathcal{P}((A\times A)\cup A)$$? More generally, is it true that if $$X$$ and $$Y$$ are infinite and $$X\sim Y$$, then $$X\cup Y\sim Y$$?
 
Physics news on Phys.org
Andrei said:
Suppose $$A$$ is a set with at least two elements and $$A\times A\sim A.$$ Then $$\mathcal{P}(A)\times\mathcal{P}(A)\sim\mathcal{P}(A).$$

My attempt: I know that $$\mathcal{P}((A\times A)\cup A)\sim\mathcal{P}(A\times A)\times\mathcal{P}(A)\sim\mathcal{P}(A) \times \mathcal{P}(A).$$ How to prove that $$\mathcal{P}(A)\sim \mathcal{P}((A\times A)\cup A)$$? More generally, is it true that if $$X$$ and $$Y$$ are infinite and $$X\sim Y$$, then $$X\cup Y\sim Y$$?
Very often the easiest way to tackle problems like this is to use the Schröder–Bernstein theorem. If $A\times A \sim A$ then there is a bijective map $\phi:A\times A\to A.$ Given distinct points $x,y\in A$, the map $U\times V \mapsto \phi\bigl((U\times \{x\})\cup (V\times\{y\})\bigr)$ then gives you an injective map from $\mathcal{P}(A)\times\mathcal{P}(A)$ to $\mathcal{P}(A).$ On the other hand $U\mapsto U\times A$ is an injection in the reverse direction.
 
Andrei said:
Suppose $$A$$ is a set with at least two elements and $$A\times A\sim A.$$ Then $$\mathcal{P}(A)\times\mathcal{P}(A)\sim\mathcal{P}(A).$$
The fact is that if $$A$$ is finite then $$(A\times A)\sim A$$ is impossible.
If $$\|A\|=n\text{ then }\|A\times A\|=n^2$$

Suppose that $$\{C,D,G,H\}\subset \mathcal{P}(A)$$

Now if $$(C,D)\ne(G,H)\text{ then }\left( {C \ne G} \right) \vee \left( {D \ne H} \right)$$

What can you do with that?
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K