Andrei1
- 36
- 0
Suppose $$A$$ is a set with at least two elements and $$A\times A\sim A.$$ Then $$\mathcal{P}(A)\times\mathcal{P}(A)\sim\mathcal{P}(A).$$
My attempt: I know that $$\mathcal{P}((A\times A)\cup A)\sim\mathcal{P}(A\times A)\times\mathcal{P}(A)\sim\mathcal{P}(A) \times \mathcal{P}(A).$$ How to prove that $$\mathcal{P}(A)\sim \mathcal{P}((A\times A)\cup A)$$? More generally, is it true that if $$X$$ and $$Y$$ are infinite and $$X\sim Y$$, then $$X\cup Y\sim Y$$?
My attempt: I know that $$\mathcal{P}((A\times A)\cup A)\sim\mathcal{P}(A\times A)\times\mathcal{P}(A)\sim\mathcal{P}(A) \times \mathcal{P}(A).$$ How to prove that $$\mathcal{P}(A)\sim \mathcal{P}((A\times A)\cup A)$$? More generally, is it true that if $$X$$ and $$Y$$ are infinite and $$X\sim Y$$, then $$X\cup Y\sim Y$$?