Is the Adjoint of the Position Operator Self-Adjoint?

Click For Summary

Discussion Overview

The discussion revolves around the adjoint of the position operator in quantum mechanics, specifically whether it is self-adjoint. Participants explore the mathematical formulation of the adjoint and its implications, addressing concepts of Hermitian operators and the completeness of eigenvectors.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants present calculations suggesting that the adjoint of the position operator, denoted as ##x^{\dagger}##, equals ##x##.
  • Others point out that demonstrating an operator has a complete spectrum of eigenvectors and real eigenvalues indicates it is Hermitian, but this does not necessarily confirm it is self-adjoint.
  • One participant emphasizes the need to show that for all vectors ##u## and ##v##, the relation ##\langle u |Q|v \rangle = \langle v| Q|u \rangle^*## holds to establish that an operator is Hermitian.
  • Concerns are raised about the completeness of the proof provided, suggesting that the role of eigenvectors and their basis should be more clearly articulated.
  • Another participant questions the use of bra-ket notation for discussing operators and suggests using regular scalar product notation instead.

Areas of Agreement / Disagreement

Participants generally agree that the position operator is Hermitian, but there is no consensus on the completeness and validity of the proofs presented regarding its adjoint. Multiple competing views on the interpretation of self-adjointness and the implications of the calculations remain unresolved.

Contextual Notes

Some limitations include the dependence on definitions of Hermitian and self-adjoint operators, as well as the potential confusion arising from notation choices. The discussion also reflects varying levels of rigor in mathematical proofs and assumptions about the completeness of the eigenvector basis.

Kashmir
Messages
466
Reaction score
74
I'm trying to find the adjoint of position operator.

I've done this:

The eigenvalue equation of position operator is

##\hat{x}|x\rangle=x|x\rangle##

The adjoint of position operator acts as

##\left\langle x\left|\hat{x}^{\dagger}=x<x\right|\right.##

Then using above equation we've
##\left\langle x\left|x^{\dagger}\right| x\right\rangle=x\langle x \mid x\rangle##

or

##\langle x|( x^{\dagger}
|x\rangle)=\langle x|(x| x\rangle)##

Then

##x^{\dagger}|x\rangle=x|x\rangle##

Hence
##x^{\dagger}=x##

Is this correct?
 
Physics news on Phys.org
Kashmir said:
##\hat{x}|x\rangle=x|x\rangle##

The adjoint of position operator acts as

##\left\langle x\left|\hat{x}^{\dagger}=x<x\right|\right.##

Then using above equation we've
##\left\langle x\left|x^{\dagger}\right| x\right\rangle=x\langle x \mid x\rangle##
##\langle x|( x^{\dagger}
|x\rangle)=\langle x|(x| x\rangle)##

Then

##x^{\dagger}|x\rangle=x|x\rangle##

Hence
##x^{\dagger}=x##

Is this correct?
I think you've shown that any operator that has a complete spectrum of eigenvectors and real eigenvalues is Hermitian (this is not the same as self-adjoint, but that may be the book you are using).

An important identity for any operator and vectors is:
$$\langle u |Q^{\dagger}|v \rangle = \langle v| Q|u \rangle^*$$To show that ##Q## is Hermitian you need to show that:$$\forall u, v: \ \langle u |Q|v \rangle = \langle v| Q|u \rangle^*$$Your proof is not wrong, but you could add a bit more to it, perhaps.
 
  • Like
Likes   Reactions: vanhees71 and Kashmir
PeroK said:
I think you've shown that any operator that has a complete spectrum of eigenvectors and real eigenvalues is Hermitian (this is not the same as self-adjoint, but that may be the book you are using).

An important identity for any operator and vectors is:
$$\langle u |Q^{\dagger}|v \rangle = \langle v| Q|u \rangle^*$$To show that ##Q## is Hermitian you need to show that:$$\forall u, v: \ \langle u |Q|v \rangle = \langle v| Q|u \rangle^*$$Your proof is not wrong, but you could add a bit more to it, perhaps.
I'm thinking about it again.

In your opinion how can I find ##x^{\dagger}## then? Also is my result correct about ##x^{\dagger}##?
 
Kashmir said:
I'm thinking about it again.

In your opinion how can I find ##x^{\dagger}## then? Also is my result correct about ##x^{\dagger}##?
In your proof you didn't emphasise that ##|x \rangle## was any eigenvector of ##\hat x## and that every vector can be expressed as an integral over these eigenvectors (which form an uncountable basis). In general:
$$| \alpha \rangle = \int dx \ |x \rangle \langle x| \alpha \rangle = \int dx \ \alpha(x) |x \rangle$$
 
  • Like
  • Informative
Likes   Reactions: Kashmir and vanhees71
You already know that the position operator is Hermitian, so the question is whether your proof is valid and complete. There's no question about the conclusion!
 
  • Like
Likes   Reactions: Kashmir and vanhees71
PeroK said:
You already know that the position operator is Hermitian, so the question is whether your proof is valid and complete. There's no question about the conclusion!

PeroK said:
You already know that the position operator is Hermitian, so the question is whether your proof is valid and complete. There's no question about the conclusion!
We can write for any kets:

##\langle\varphi|\hat{x}| \psi\rangle=\int x d x\langle\varphi \mid x\rangle\langle x \mid \psi\rangle##

Similarly
##\langle\psi|\hat{x}| \varphi\rangle^{*}=\int x d x(\langle \psi\mid x\rangle\langle x \mid \varphi\rangle)^{*}=\int x d x\langle x \mid \psi\rangle\langle\varphi \mid x\rangle####\begin{aligned} \therefore \quad &\langle\varphi|\hat{x}| \psi\rangle=\langle\psi|\hat{x}| \varphi\rangle^{*} \\ & \Rightarrow x^{\dagger}=x \end{aligned}##

Is this valid and complete now?
 
  • Like
Likes   Reactions: PeroK and vanhees71
Discussing operators and their adjoints in bra-ket notation is wrong, or at most confusing. Just stick to regular scalar product notation ##\langle a, b\rangle##.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K