Undergrad Is the Adjoint of the Position Operator Self-Adjoint?

Click For Summary
SUMMARY

The discussion centers on the adjoint of the position operator, denoted as ##\hat{x}##, in quantum mechanics. The participants confirm that the adjoint operator ##x^{\dagger}## equals the position operator itself, leading to the conclusion that ##x^{\dagger} = x##. They emphasize that while the position operator is Hermitian, the distinction between Hermitian and self-adjoint operators is crucial. The proof involves demonstrating that the inner product satisfies the condition for Hermitian operators, specifically ##\langle u |Q|v \rangle = \langle v| Q|u \rangle^*##.

PREREQUISITES
  • Understanding of quantum mechanics and operator theory
  • Familiarity with bra-ket notation and inner products
  • Knowledge of Hermitian and self-adjoint operators
  • Basic concepts of eigenvalues and eigenvectors in quantum systems
NEXT STEPS
  • Study the properties of Hermitian operators in quantum mechanics
  • Learn about the implications of self-adjoint operators
  • Explore the role of eigenvectors in quantum mechanics
  • Investigate the mathematical foundations of bra-ket notation
USEFUL FOR

Quantum physicists, students of quantum mechanics, and researchers focusing on operator theory and its applications in quantum systems.

Kashmir
Messages
466
Reaction score
74
I'm trying to find the adjoint of position operator.

I've done this:

The eigenvalue equation of position operator is

##\hat{x}|x\rangle=x|x\rangle##

The adjoint of position operator acts as

##\left\langle x\left|\hat{x}^{\dagger}=x<x\right|\right.##

Then using above equation we've
##\left\langle x\left|x^{\dagger}\right| x\right\rangle=x\langle x \mid x\rangle##

or

##\langle x|( x^{\dagger}
|x\rangle)=\langle x|(x| x\rangle)##

Then

##x^{\dagger}|x\rangle=x|x\rangle##

Hence
##x^{\dagger}=x##

Is this correct?
 
Physics news on Phys.org
Kashmir said:
##\hat{x}|x\rangle=x|x\rangle##

The adjoint of position operator acts as

##\left\langle x\left|\hat{x}^{\dagger}=x<x\right|\right.##

Then using above equation we've
##\left\langle x\left|x^{\dagger}\right| x\right\rangle=x\langle x \mid x\rangle##
##\langle x|( x^{\dagger}
|x\rangle)=\langle x|(x| x\rangle)##

Then

##x^{\dagger}|x\rangle=x|x\rangle##

Hence
##x^{\dagger}=x##

Is this correct?
I think you've shown that any operator that has a complete spectrum of eigenvectors and real eigenvalues is Hermitian (this is not the same as self-adjoint, but that may be the book you are using).

An important identity for any operator and vectors is:
$$\langle u |Q^{\dagger}|v \rangle = \langle v| Q|u \rangle^*$$To show that ##Q## is Hermitian you need to show that:$$\forall u, v: \ \langle u |Q|v \rangle = \langle v| Q|u \rangle^*$$Your proof is not wrong, but you could add a bit more to it, perhaps.
 
  • Like
Likes vanhees71 and Kashmir
PeroK said:
I think you've shown that any operator that has a complete spectrum of eigenvectors and real eigenvalues is Hermitian (this is not the same as self-adjoint, but that may be the book you are using).

An important identity for any operator and vectors is:
$$\langle u |Q^{\dagger}|v \rangle = \langle v| Q|u \rangle^*$$To show that ##Q## is Hermitian you need to show that:$$\forall u, v: \ \langle u |Q|v \rangle = \langle v| Q|u \rangle^*$$Your proof is not wrong, but you could add a bit more to it, perhaps.
I'm thinking about it again.

In your opinion how can I find ##x^{\dagger}## then? Also is my result correct about ##x^{\dagger}##?
 
Kashmir said:
I'm thinking about it again.

In your opinion how can I find ##x^{\dagger}## then? Also is my result correct about ##x^{\dagger}##?
In your proof you didn't emphasise that ##|x \rangle## was any eigenvector of ##\hat x## and that every vector can be expressed as an integral over these eigenvectors (which form an uncountable basis). In general:
$$| \alpha \rangle = \int dx \ |x \rangle \langle x| \alpha \rangle = \int dx \ \alpha(x) |x \rangle$$
 
  • Like
  • Informative
Likes Kashmir and vanhees71
You already know that the position operator is Hermitian, so the question is whether your proof is valid and complete. There's no question about the conclusion!
 
  • Like
Likes Kashmir and vanhees71
PeroK said:
You already know that the position operator is Hermitian, so the question is whether your proof is valid and complete. There's no question about the conclusion!

PeroK said:
You already know that the position operator is Hermitian, so the question is whether your proof is valid and complete. There's no question about the conclusion!
We can write for any kets:

##\langle\varphi|\hat{x}| \psi\rangle=\int x d x\langle\varphi \mid x\rangle\langle x \mid \psi\rangle##

Similarly
##\langle\psi|\hat{x}| \varphi\rangle^{*}=\int x d x(\langle \psi\mid x\rangle\langle x \mid \varphi\rangle)^{*}=\int x d x\langle x \mid \psi\rangle\langle\varphi \mid x\rangle####\begin{aligned} \therefore \quad &\langle\varphi|\hat{x}| \psi\rangle=\langle\psi|\hat{x}| \varphi\rangle^{*} \\ & \Rightarrow x^{\dagger}=x \end{aligned}##

Is this valid and complete now?
 
  • Like
Likes PeroK and vanhees71
Discussing operators and their adjoints in bra-ket notation is wrong, or at most confusing. Just stick to regular scalar product notation ##\langle a, b\rangle##.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K