MHB Is the Divergence of the Cross Product of Two Gradients Always Zero?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The discussion centers on a mathematical problem involving the divergence of the cross product of two gradients. It is established that for differentiable functions f and g, the divergence of the cross product of their gradients, represented as div(∇f × ∇g), equals zero. Sudharaka provided a correct solution to this problem, demonstrating the mathematical reasoning behind this conclusion. The conversation highlights the importance of understanding vector calculus concepts in relation to differentiable functions. This result is significant in fields that utilize vector analysis, such as physics and engineering.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem.

-----

Problem: Let $f,g : \mathbb{R}^3\rightarrow\mathbb{R}$ be differentiable functions. Given that $\mathbf{F}=\langle F_1,F_2,F_3\rangle$ is a differentiable vector field and $\text{div}\,(\mathbf{F})=\nabla\cdot\mathbf{F} = \dfrac{\partial F_1}{\partial x}+\dfrac{\partial F_2}{\partial y}+\dfrac{\partial F_3}{\partial z}$, show that $\text{div}\,(\nabla f\times\nabla g) = 0$.

-----

 
Physics news on Phys.org
This problem was correctly answered by Sudharaka. You can find his solution below.

For any two vector fields, \(\mathbf{F}\mbox{ and }\mathbf{G}\) the following vector identity holds.

\[\text{div}\,(\mathbf{F}\times\mathbf{G}) = \operatorname{curl}(\mathbf{F})\cdot\mathbf{G} \;-\; \mathbf{F} \cdot \operatorname{curl}(\mathbf{G})\]\(\mbox{Replace, }\mathbf{F}\mbox{ by }\nabla f\mbox{ and }\mathbf{G}\mbox{ by }\nabla g\mbox{ and we get, }\)\[\text{div}\,(\mathbf{\nabla f}\times\mathbf{\nabla g}) = \operatorname{curl}(\mathbf{\nabla f})\cdot\mathbf{\nabla g} \;-\; \mathbf{\nabla f} \cdot \operatorname{curl}(\mathbf{\nabla g})\]The curl of the gradient of any scalar field is the zero vector. Therefore, \(\operatorname{curl}(\mathbf{\nabla f})=\mathbf{0}\mbox{ and }\operatorname{curl}(\mathbf{\nabla g})=\mathbf{0}\)\[\therefore\text{div}\,(\mathbf{\nabla f}\times\mathbf{\nabla g}) = 0\]Q.E.D.
 

Similar threads

Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
228
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K