MHB Is the product space Hausdorff if both $X$ and $Y$ are Hausdorff?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The discussion centers on proving that the product space $X \times Y$ is Hausdorff if and only if both $X$ and $Y$ are Hausdorff. The original poster acknowledges a delay in posting the problem and notes that no one has responded yet. They then provide their own solution to the problem. The focus remains on the topological properties of the spaces involved and the implications for their product. The thread highlights the importance of understanding Hausdorff spaces in topology.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem.

-----

Problem: Let $X$ and $Y$ be two non-empty topological spaces. Show that the product space $X\times Y$ is Hausdorff if and only if $X$ and $Y$ are Hausdorff.

-----

 
Physics news on Phys.org
Sorry about posting this late guys! Some things happened last night and it slipped my mind; I was going to do it this morning, but then I overslept... >_>.

No one answered this week's question. Here's my solution below.

Proof: Suppose $X$ and $Y$ are Hausdorff. Then for any $x_1,x_2\in X$, $y_1,y_2\in Y$, there are open neighborhoods $U_1\ni x_1,U_2\ni x_2 \subset X$ and $V_1\ni y_1,V_2\ni y_2\in Y$ such that $U_1\cap U_2=\emptyset$ and $V_1\cap V_2=\emptyset$. Now, consider the product space $X\times Y$. Our open sets are of the form $U_i\times V_i$. So in this case consider the sets $U_1\times V_1$ and $U_2\times V_2$. We now see that $(U_1\times V_1)\cap(U_2\times V_2) = (U_1\cap U_2)\times (V_1\cap V_2)$. Since $X$ and $Y$ are Hausdorff, we get $(U_1\times V_1)\cap (U_2\times V_2) = \emptyset$. Therefore, $X\times Y$ is Hausdoff.

Conversely, suppose $X\times Y$ is Hausdorff. Then for any two points $x_1\times y_1,x_2\times y_2\in X\times Y$, there exist open neighborhoods $U_1\times V_1\ni x_1\times y_1, U_2\times V_2\ni x_2\times y_2\subset X\times Y$ such that $(U_1\times V_1)\cap(U_2\times V_2)=\emptyset$. However, as seen above, this is equivalent to $(U_1\cap U_2)\times (V_1\cap V_2)=\emptyset$. Thus the only way to have this equality is if we have $U_1\cap U_2=\emptyset$ and $V_1\cap V_2=\emptyset$. Therefore, $X$ and $Y$ are Hausdorff.

Q.E.D.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K