MHB Is the Set of Non-Negative Integers Formed by $a-dx$ Always Nonempty?

  • Thread starter Thread starter MI5
  • Start date Start date
  • Tags Tags
    Set
MI5
Messages
8
Reaction score
0
My question concerns proving the set of non-negative integers of the form $a-dx ~~(a, d, x \in \mathbb{Z}, d \ge 1)$ is nonempty. This is the proof from my book. If $a \ge 0$, then $a = a-d\cdot 0 \in S$. If $a < 0$, let $x = -y$ where $y$ is a positive integer. Since $d$ is positive, we have $a-dx = a+dy \in S$ for sufficiently large $y$. Thus $S$ is nonempty.

Could someone explain sentence that I've bolded? It's not clear to me.
 
Physics news on Phys.org
Um, simple form: x can be negative?

For example, if a = -1,000,000, and d = 2, it suffices to to take x < -500,000.
 
I think I understand now, thank you. Should it be $x \le -500,000$ though?
 
If you only require that [math]a - dx[/math] be non-negative, sure, yep, you betcha.
 
Thank you. One more question. This is from the beginning of a proof of the division algorithm (as you probably recognised). The thing is, considering this particular set came out of a thin air. Do you know - or would you be able to give any motivation?
 
I believe I can do that:

Suppose we are trying to establish a quotient and remainder for b divided by a. We might, naively try "guess and check":

Pick a positive number d, any number. Calculate ad, and subtract it from b, call this number "a remainder", r:

r = b - ad.

Now, is there "some possible best remainder"? One way to "optimize" this is to try to pick d so that r is as small as possible (for reasons that may become clearer much later in your mathematical life, it is also more practical to work with non-negative remainders).

So what is this set of "non-negative remainders"? Why, it's just the S we've been talking about! Why are we so concerned about S being non-empty?

So we can use THIS theorem:

(Well-ordering of the Natural Numbers}:

Any ​non-empty set of non-negative integers has a least element.

This allows us to say with confidence a "best" remainder EXISTS, even if we haven't yet done the arithmetic. This, in turn let's us find UNIQUE d,r for b divided by a: we pick d so that r is the least element of S. For example, if we want to find these when b = 57, a = 7:

57 - 7 = 50 (first choice of d = 1)
57 - 14 = 43 (second choice of d = 2). Well, 43 < 50, so we'll keep d = 2 for now, and keep plugging away.

57 - 21 = 36 (third choice of d = 3). Again, 36 < 43, so we have a new winner (for now).

57 - 28 = 29 (29 < 36)
57 - 35 = 22 (22 < 29)
57 - 42 = 15 (15 < 22)
57 - 49 = 8 (8 < 15)
57 - 56 = 1 (1 < 8)

57 - 63 = -6 (oops, we went too far, -6 is negative). So the unique values we seek are d = 8, and r = 1. If we have established beforehand (rigorously) the existence and uniqueness of d and r, we don't have to go any further, our search for d and r is done, we don't have to try any more possibilities (good thing, too, since there are SO MANY integers we might try).
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top