Is There a Clever Strategy to Solve This Week's Math Challenge?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
SUMMARY

This week's Problem of the Week (POTW) involves demonstrating that for integers $a_j, b_j, c_j$ (where at least one of them is odd for each $j$), there exist integers $r$, $s$, and $t$ such that the expression $ra_j + sb_j + tc_j$ is odd for at least $4N/7$ values of $j$. This problem is derived from Problem B-1 of the 2000 William Lowell Putnam Mathematical Competition. The discussion highlights Opalg's clever solution as a significant contribution to solving this mathematical challenge.

PREREQUISITES
  • Understanding of odd and even integers
  • Familiarity with linear combinations of integers
  • Knowledge of mathematical proof techniques
  • Experience with competition-level mathematics
NEXT STEPS
  • Study the properties of odd and even integers in linear combinations
  • Explore mathematical proof strategies used in competition settings
  • Review solutions to previous Putnam Mathematical Competitions
  • Investigate combinatorial number theory related to integer properties
USEFUL FOR

Mathematics students, competitive problem solvers, and educators looking to enhance their understanding of integer properties and proof techniques in mathematical competitions.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Let $a_j,b_j,c_j$ be integers for $1\leq j\leq N$. Assume for each $j$, at least one of $a_j,b_j,c_j$ is odd. Show that there exist integers $r$, $s$, $t$ such that $ra_j+sb_j+tc_j$ is odd for at least $4N/7$ values of $j$, $1\leq j\leq N$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 265 - May 30, 2017

This was Problem B-1 in the 2000 William Lowell Putnam Mathematical Competition.

Congratulations to Opalg for what I consider to be a particularly clever solution to this week's POTW:

We are only interested in whether the numbers are even or odd, so we may as well reduce mod 2 and assume that all the numbers $a_j,b_j,c_j$, and also $r,s,t$ are $0$ or $1$.

There are eight possible triples $(0,0,0)$, $(0,0,1)$, $(0,1,0)$, $(0,1,1)$, $(1,0,0)$, $(1,0,1)$, $(1,1,0)$, $(1,1,1)$. None of the triples $(a_j,b_j,c_j)$ can be equal to $(0,0,0)$ (because each of them must contain an odd number). Also, $(r,s,t) \ne (0,0,0)$ (because then $ra_j + sb_j + tc_j = 0$ for all $j$, which is not what we want).

Let $P$ be the $3\times7$ matrix whose columns are the seven possible choices for $(r,s,t)$: $P = \begin{bmatrix} 0&0&0&1&1&1&1 \\ 0&1&1&0&0&1&1 \\ 1&0&1&0&1&0&1 \end{bmatrix}.$ Then $$P^{\small \textsf T}P = \begin{bmatrix}0&0&1 \\ 0&1&0 \\ 0&1&1 \\ 1&0&0 \\ 1&0&1 \\ 1&1&0 \\ 1&1&1 \end{bmatrix} \begin{bmatrix} 0&0&0&1&1&1&1 \\ 0&1&1&0&0&1&1 \\ 1&0&1&0&1&0&1 \end{bmatrix} = \begin{bmatrix} 1&0&1&0&1&0&1 \\ 0&1&1&0&0&1&1 \\ 1&1&0&0&1&1&0 \\ 0&0&0&1&1&1&1 \\ 1&0&1&1&0&1&0 \\ 0&1&1&1&1&0&0 \\ 1&1&0&1&0&0&1 \end{bmatrix}$$ (where the product is formed using mod 2 arithmetic). Notice that each row of $P^{\small \textsf T}P$ contains exactly four $1$s.

Let $M$ be the $N\times3$ matrix whose rows are the triples $(a_j,b_j,c_j)$: $M = \begin{bmatrix} a_1&b_1&c_1 \\ a_2&b_2&c_2 \\ \vdots&\vdots&\vdots \\ a_N&b_N&c_N \end{bmatrix}.$ The $(j,k)$-element of the product $MP$ is $ra_j + sb_j + tc_j$, where $(r,s,t)$ is the $k$th column of $P$. Each row of $MP$ is the same as one of the rows of $P^{\small \textsf T}P$ and therefore contains four $1$s. Thus $MP$ contains $4N$ $1$s in total. But $MP$ has seven columns, so at least one column must contain at least $4N/7$ $1$s. This says that if $(r,s,t)$ is the corresponding column of $P$ then $ra_j + sb_j + tc_j = 1$ for at least $4N/7$ values of $j$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K