MHB Is This Week's Math Problem of the Week Still Unsolved?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
This week's Math Problem of the Week involves proving that a morphism of $S$-spaces is a local homeomorphism if and only if it is an open mapping. Despite the complexity of the problem, no solutions have been submitted yet. The discussion encourages participants to engage with the problem and share their approaches. A solution is provided by the original poster for reference. The challenge remains unsolved, inviting further contributions from the community.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Call an $S$-space over a topological space $B$ a pair $(E,p)$ where $E$ is a topological space and $p$ is a local homeomorphism from $E$ into $B$. A morphism of $S$-spaces $(E_1,p_1)$, $(E_2,p_2)$ over $B$ is a continuous mapping $\phi : E_1 \to E_2$ such that $p_1 = p_2 \circ \phi$. Show that if $\phi$ is a morphism of $S$-spaces, then $\phi$ is a local homeomorphism if and only if $\phi$ is an open mapping.-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one solved this week's problem. You can read my solution below.
Let $\phi : (E_1,p_1) \to (E_2,p_2)$ be a morphism of $S$-spaces over $B$.

Suppose $\phi$ is a local homeomorphism. Fix an open set $U$ in $E_1$ and take $y\in \phi(U)$. There is an $x\in U$ such that $\phi(x) = y$; since $\phi$ is a local homeomorphism, there exists an open neighborhood $G$ of $x$ such that $\phi|G : G \to \phi(G)$ is a homeomorphism. Then $\phi(G\cap U)$ is an open neighborhood of $y$ contained in $\phi(U)$. Thus $\phi(U)$ is open, and consequently $\phi$ is an open mapping.

Conversely, assume $\phi$ is an open mapping. Let $x\in E_1$. Since $p_1$ is a local homeomorphism, there exists an open neighborhood $U$ of $x$ such that $p_1 | U : U \to p_1(U)$ is a homeomorphism. Since $p_2$ is a local homeomorphism, there is an open neighborhood $V$ of $\phi(x)$ such that $p_2 | V \to p_2(V)$ is a homeomorphism. The set $G = U \cap p_2^{-1}(V)$ is an open neighborhood of $x$ for which the composition $G \xrightarrow{\phi|G} \phi(G) \xrightarrow{p_2|G} p_1(G)$ is $p_1|G$. Since $p_1|G$ and $p_2|G$ are homeomorphisms, so is $\phi|G$. Hence, $\phi$ is a local homeomorphism.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K