- #1
- 16
- 0
Hi all,
I have a nonlinear equation of the form:
[tex]
\frac{TP_x}{TP_R} = c_0 + c_1 U_R^n + c_2 \frac{T_R^2}{\sqrt{U_R}}
[/tex]
This equation describes the relationship between tidal parameters and river discharge (velocity) in tidal rivers derived from the 1-D St. Venant equations. TPx is some tidal property at station x along the river, TPR is the same tidal property at a coastal reference station, UR is the river flow (velocity), and TR is the tidal range at the reference station.
What I am trying to do is calibrate this model using contemporary data where TPx, TPR, TR, and UR are known. Therefore, I am trying to determine the coefficients (c0, c1, c2, and n) of this equation using Matlab's nlinfit function. The problem is that the last term in the equation complicates the regression because the TR variable is on the right-hand side. Is there a way separating of the independent and dependent variables for regression? Consider any combination of TPR, TPx, and TR to be the independent variable. I should also mention that 0.5 < n < 1.5.
thanks
I have a nonlinear equation of the form:
[tex]
\frac{TP_x}{TP_R} = c_0 + c_1 U_R^n + c_2 \frac{T_R^2}{\sqrt{U_R}}
[/tex]
This equation describes the relationship between tidal parameters and river discharge (velocity) in tidal rivers derived from the 1-D St. Venant equations. TPx is some tidal property at station x along the river, TPR is the same tidal property at a coastal reference station, UR is the river flow (velocity), and TR is the tidal range at the reference station.
What I am trying to do is calibrate this model using contemporary data where TPx, TPR, TR, and UR are known. Therefore, I am trying to determine the coefficients (c0, c1, c2, and n) of this equation using Matlab's nlinfit function. The problem is that the last term in the equation complicates the regression because the TR variable is on the right-hand side. Is there a way separating of the independent and dependent variables for regression? Consider any combination of TPR, TPx, and TR to be the independent variable. I should also mention that 0.5 < n < 1.5.
thanks
Last edited: