MHB Kaleigh's question at Yahoo Answers involving eliminating a parameter

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Parameter
Click For Summary
The discussion centers on finding the equation in the xy-plane for the parametric equations x = cos(t) and y = sec(t). By multiplying these equations, the relationship xy = 1 is derived, which can also be expressed as y = 1/x. This provides a clear equation that represents the graph in the xy-plane. The conversation encourages further exploration of parametric equations and invites additional questions on the topic. The focus remains on the mathematical process of eliminating the parameter t to find the desired equation.
Mathematics news on Phys.org
Hello Kaleigh,

We are given the parametric equations:

$$x=\cos(t)$$

$$y=\sec(t)$$

One way we may eliminate the parameter $t$ is to multiply the two equations together, giving:

$$xy=1$$

We may choose to write this as:

$$y=\frac{1}{x}$$

To Kaleigh and any other guests viewing this topic, I invite and encourage you to post other parametric equations questions in our http://www.mathhelpboards.com/f21/ forum.

Best Regards,

Mark.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K