MHB Let A and B be two subsets of some universal set. Prove that....

KOO
Messages
19
Reaction score
0
**Let A and B be two subsets of some universal set.
Prove that if $(A\cup B)^c$ = $A^c$ U $B^c$, then A = B.**Attempt:

Let $x\in A$. Then $x\in A\cup B$, so $x\notin(A\cup B)^c$. By hypothesis $(A\cup B)^c=A^c\cup B^c$, so $x\notin A^c\cup B^c$. In particular, then, $x\notin B^c$, and therefore $x\in B$. Since $x$ was an arbitrary element of $A$, this shows that $A\subseteq B$.

How do we show $B\subseteq A$?
 
Physics news on Phys.org
KOO said:
**Let A and B be two subsets of some universal set.
Prove that if $(A\cup B)^c$ = $A^c$ U $B^c$, then A = B.**Attempt:

Let $x\in A$. Then $x\in A\cup B$, so $x\notin(A\cup B)^c$. By hypothesis $(A\cup B)^c=A^c\cup B^c$, so $x\notin A^c\cup B^c$. In particular, then, $x\notin B^c$, and therefore $x\in B$. Since $x$ was an arbitrary element of $A$, this shows that $A\subseteq B$.

How do we show $B\subseteq A$?

Start with "Let $x\in B$."
Then continue with the same argument you have - just with $A$ and $B$ swapped around...
 
Or...just note that both expressions are symmetric in A and B, and union is commutative...
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top