I Linear Accelerator Length Contraction

Click For Summary
The discussion focuses on the impact of relativistic length contraction on electron bunches in a linear accelerator. It highlights that while the lengths of the tubular electrodes may appear constant at relativistic speeds, the gaps between electron bunches do not contract due to the nature of acceleration. The gap is not a rigid structure; instead, it changes dynamically in the rest frame of the bunches as they accelerate. This leads to the conclusion that the observed behavior of the gaps differs from the expected contraction. The complexities of relativistic effects in particle accelerators are emphasized in this context.
Orthoceras
Messages
125
Reaction score
48
TL;DR
Effect of relativistic length contraction on the electron bunches in a linear accelerator?
I am trying to understand the effect of relativistic length contraction on the electron bunches in a linear accelerator. Figure B is for nonrelativistic speeds, successive cylinder lengths are progressively longer. However, wikipedia says "At speeds near the speed of light, the incremental velocity increase will be small, with the energy appearing as an increase in the mass of the particles. In portions of the accelerator where this occurs, the tubular electrode lengths will be almost constant", so it should figure D or E. I expect length contraction to occur, therefore D. However, I don't see why the the gap between bunches does not contract.

Which option is right?

linac5.png

Red: electron bunches; grey: cylinders
 
Last edited:
Physics news on Phys.org
Orthoceras said:
Summary:: Effect of relativistic length contraction on the electron bunches in a linear accelerator?

However, I don't see why the the gap between bunches does not contract.
This has to do with how the acceleration is performed. The gap is not a rigid object (not that rigid objects exist in relativity) that maintains the same rest length. The setup is such that the distance between bunches in the instantaneous rest frame of a bunch increases during the process.
 
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 40 ·
2
Replies
40
Views
4K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 50 ·
2
Replies
50
Views
3K
  • · Replies 54 ·
2
Replies
54
Views
5K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 42 ·
2
Replies
42
Views
7K
  • · Replies 44 ·
2
Replies
44
Views
2K