When talking about ordinary (real) linear differential equations with constant coefficients the idea is that we are dealing with the vector space of real functions over the field of real numbers. But when we allow the coefficients of a linear differential equation to be functions are we dealing with a different vector space (possibly one over the field of real functions) or are we dealing with the same vector space with some additional structure?(adsbygoogle = window.adsbygoogle || []).push({});

I guess the question is: for differential equations of the form

[tex] y''(x)+p(x)y'(x)+q(x)y(x)=f(x) [/tex]

are the multiplications ##p(x)y'(x)## and ##q(x)y(x)## operations of the form ##V\times{}V\rightarrow{}V{}## (additional structure on theoriginalvector field) or operations of the form ##F\times{}V\rightarrow{}V{}## (where ##V## and ##F## are the vector space and field, respectively)?

Also, if we are dealing with a vector space over the field of real functions what does the vector space consist of? And if we are dealing with the original vector space with some additional structure does it have a name?

Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Linear equations with varying coefficients

**Physics Forums | Science Articles, Homework Help, Discussion**