find_the_fun
- 147
- 0
Solve the linear equation:
[math]x\frac{dy}{dx}-y=x^2sinx[/math]
rewrite [math]\frac{dy}{dx}-\frac{y}{x}=\frac{x^2sinx}{x}=xsinx[/math]
[math]P(x)=\frac{-1}{x}[/math]
So [math]e^ { \int \frac{-1}{x} dx }=-1[/math]<=this is where I went wrong
[math]\frac{d}{dx}[-y]=-xsinx[/math]
[math]\int -x sin(x)=xcosx-sinx +C[/math] but the answer key gives [math]y=cx-xcosx[/math]
[math]x\frac{dy}{dx}-y=x^2sinx[/math]
rewrite [math]\frac{dy}{dx}-\frac{y}{x}=\frac{x^2sinx}{x}=xsinx[/math]
[math]P(x)=\frac{-1}{x}[/math]
So [math]e^ { \int \frac{-1}{x} dx }=-1[/math]<=this is where I went wrong
[math]\frac{d}{dx}[-y]=-xsinx[/math]
[math]\int -x sin(x)=xcosx-sinx +C[/math] but the answer key gives [math]y=cx-xcosx[/math]
Last edited: