I would be grateful for some help/tips/with this question.(adsbygoogle = window.adsbygoogle || []).push({});

Let (V,<,>) be a complex inner product space with an orthonormal basis {v1,v2,.......vn}. Let L:V------>V be a linear operator. Explain what is meant by saying that L is self-adjoint. Let A=a_ij be the matrix representing L with respect to the basis {v1,......v_n}. prove the following.

i) L is self-adjoint if and only if <Lvi,vj>=<vi,Lvj>.

ii) a_ij=<Lvj,vi>.

L is self adjoint means L = L*, but we know L* is the one and unique operator for which <Lv, u> = <v, L*u> for all u,v. How do i prove i) and ii).

Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Linear Operator and Self Adjoint

**Physics Forums | Science Articles, Homework Help, Discussion**