So I have a couple of questions in regards to linear operators and their eigenvalues and how it relates to their matrices with respect to some basis.(adsbygoogle = window.adsbygoogle || []).push({});

For example, I want to show that given a linear operator T such that [tex]T(x_1,x_2,x_3) = (3x_3, 2x_2, x_1)[/tex] then T can be represented by a diagonal matrix with respect to some basis of [tex]V = \mathbb{R}^3[/tex].

So one approach is to use a theorem that says: If T has dim(V) distinct eigenvalues, then T has a diagonal matrix with respect to some basis V.

So we simply look for the solutions of: [tex]\lambda x_1 = 3 x_3[/tex], [tex]\lambda x_2 = 2 x_2[/tex], [tex]\lambda x_3 = x_1[/tex]

So we find that [tex]\lambda = 2, \pm \sqrt 3[/tex] with some corresponding eigenvectors.So we use the theorem and finish off the question.

So finally, my problem with all this. The matrix of T with respect to the standard basis {(0,0,1), (0,1,0),(1,0,0)} (purposely out of order) would be:

[tex]\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}[/tex]

which is diagonal right? But I have a theorem that says that the eigenvalues of T with respect to a uppertriangular matrix "consist precisely of the entries on the diagonal of that upper-triangular matrix".

But I didn't find 3 and 1 as eigenvalues. Is it because I switched the standard basis elements out of order? Why would that matter? And doesn't this last theorem imply that every linear operator precisely has dim V eigenvalues :S?

It was a long one but any comments are appreciated!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Linear operators, eigenvalues, diagonal matrices

**Physics Forums | Science Articles, Homework Help, Discussion**