A Link between Kraus operators and PVMs

  • A
  • Thread starter Thread starter ueu
  • Start date Start date
ueu
Messages
1
Reaction score
0
TL;DR Summary
Question about how to find kraus operators from a pvm that generates a given POVM:
can you always find two subsystems and an observable such that tracing out the result of the measurement over one of those subsystems you get the action of the Kraus operators that generates a given POVM?
I'm sorry if this discussion may be dumb.

Is this a way to find a family of kraus operators that generates a given POVM from a PVM?

Assume that you have a POVM given by the family of operators ##\{E_i\}_i##. Then it is possible to find a PVM that generates the given POVM by this procedure:
It is possible to find two subsystems S1 and S2 with spaces respectively ##\mathcal{H}_1## and ##\mathcal{H}_2## and an observable ##M## with spectral projectors ##\{P_k\}_k## and eigenvalues ##\lambda_i ##(let ##\Omega:=\bigcup_i \lambda_i##, let ##S## be the state space). Suppose for example that S2 is ancillary. Suppose moreover that the joint state of the system is ##\rho## and the reduced state of S1 is ##\rho_1=Tr_2(\rho)##.

##\forall i## the Kraus operators will then be defined by this action:
$$A_i: \frac{A_i\rho_1A_i^*}{Tr(A_i\rho_1A_i^*)}=Tr_2(\frac{\sum_{j\in J(i)} P_j \rho P_j}{Tr(\sum_{j\in J(i)} P_j \rho)}) $$

This must hold ##\forall \rho \in S,\rho_1=Tr_2(\rho)##.
Where ##J(i): J(i)\cap J(j)=\emptyset## ##\forall i\neq j##, ##\bigcup_i J(i)=\Omega## is a partition. (I ask for the existence of this partition because the cardinality of the family ##\{E_i\}_i## and of ##\{P_k\}_k## may be different so that we need to cluster some outcome together. I don't know if this is necessary)
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
46
Views
8K
Replies
3
Views
2K
4
Replies
175
Views
25K
Back
Top