Logic Problem: Figuring Out How Many Apples Each Man Ate

  • Context: High School 
  • Thread starter Thread starter MeesaWorldWide
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around a logic problem involving four men and a total of 11 apples. Each man knows how many apples he ate but not how many the others consumed. They engage in a series of questions to deduce the number of apples each man ate, leading to a conclusion that one participant, Kurt, figures out the distribution of apples. The conversation explores the reasoning behind their deductions and the implications of their responses.

Discussion Character

  • Exploratory
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants suggest that if Bert had eaten only one apple, he would have known he did not eat more than Alonso, implying he must have eaten at least two apples.
  • Others argue that George's response indicates he must have eaten at least three apples, as he would know if he had eaten one or two.
  • A participant notes that Kurt can only determine the distribution of apples if he has eaten five, as this allows for a unique solution given the constraints.
  • Some participants express uncertainty about whether there is a unique solution, suggesting that multiple configurations could satisfy the conditions of the problem.
  • There is a debate about the implications of the "Aha" moment, with some suggesting that all participants might realize the solution simultaneously, while others believe Kurt is the first to know.
  • One participant challenges the reasoning by stating that if Bert ate only one apple, he would have answered differently, thus questioning the assumptions made about the number of apples eaten by each man.
  • Another participant presents a list of possible solutions, indicating that there are multiple configurations that could lead to the total of 11 apples, but only one configuration leads to a unique solution for Kurt.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the uniqueness of the solution or the implications of the responses given by each man. Multiple competing views remain regarding the reasoning behind the deductions and the conditions necessary for a unique solution.

Contextual Notes

Some participants highlight the importance of the stipulation that each man can only ask questions they do not know the answers to, which affects their reasoning. There are also discussions about the assumptions made regarding the number of apples each man could have eaten, leading to various interpretations of the problem.

MeesaWorldWide
Messages
9
Reaction score
1
TL;DR
Intriguing logic problem that has me stumped
Hey, I'm new to these forums, so thanks in advance for any help I get! :D

4 men sat around a table that had a dish with 11 apples in it. By the time their discussion was over, all the apples had been eaten. Each man had at least one apple, and each man knew that fact. Each man knew the number of apples that he ate, but not how many apples each of the other men ate. They needed to figure out how many apples each of them ate by only asking questions that they didn't know the answers to.
Alonso asks "Bert, did you eat more apples than I did?"
Bert responds "I don't know. George, did you eat more apples than I did?"
George responds "I don't know".
Kurt suddenly cries "Aha" because he figured out how many apples each man ate. Can you also figure that out?

The answer is 1 (Alonso), 2 (Bert), 3 (George), 5 (Kurt), but I cannot figure out how one would logic their way to that answer.
 
Physics news on Phys.org
MeesaWorldWide said:
"Bert, did you eat more apples than I did?"
Bert responds "I don't know.
If Bert had eaten only one apple then he would have known that he did not eat more apples than Alonso. So Bert must have eaten at least two.

MeesaWorldWide said:
Bert responds "I don't know. George, did you eat more apples than I did?"
George responds "I don't know".
If George had eaten only one or two apples then he would have known that he did not eat more apples than Bert. Therefore George must have eaten at least three apples.

MeesaWorldWide said:
Kurt suddenly cries "Aha" because he figured out how many apples each man ate.
So at this point everyone knows Alonso ate at least one, Bert ate at least two, and George ate at least three.

Kurt can only know how much everyone else ate if knowledge of the number of apples he ate lets him uniquely determine how many apples everyone else ate. So he must have eaten five. That allows the solution given above.

If Kurt ate six or more there would not have been enough apples to go around, and if he ate four or fewer there would not have been a unique solution.
 
  • Like
Likes   Reactions: phinds, hutchphd, Klystron and 1 other person
Wut Dale sed. Me to.
 
  • Haha
Likes   Reactions: phinds
MeesaWorldWide said:
TL;DR Summary: Intriguing logic problem that has me stumped

Hey, I'm new to these forums, so thanks in advance for any help I get! :D

4 men sat around a table that had a dish with 11 apples in it. By the time their discussion was over, all the apples had been eaten. Each man had at least one apple, and each man knew that fact. Each man knew the number of apples that he ate, but not how many apples each of the other men ate. They needed to figure out how many apples each of them ate by only asking questions that they didn't know the answers to.
Alonso asks "Bert, did you eat more apples than I did?"
Bert responds "I don't know. George, did you eat more apples than I did?"
George responds "I don't know".
Kurt suddenly cries "Aha" because he figured out how many apples each man ate. Can you also figure that out?

The answer is 1 (Alonso), 2 (Bert), 3 (George), 5 (Kurt), but I cannot figure out how one would logic their way to that answer.
Welcome to PF, MeesaWorldWide!
 
Five apples are a lot to eat at one sitting.
 
  • Like
Likes   Reactions: Klystron
Dale said:
If Bert had eaten only one apple then he would have known that he did not eat more apples than Alonso. So Bert must have eaten at least two.

If George had eaten only one or two apples then he would have known that he did not eat more apples than Bert. Therefore George must have eaten at least three apples.

So at this point everyone knows Alonso ate at least one, Bert ate at least two, and George ate at least three.

Kurt can only know how much everyone else ate if knowledge of the number of apples he ate lets him uniquely determine how many apples everyone else ate. So he must have eaten five. That allows the solution given above.

If Kurt ate six or more there would not have been enough apples to go around, and if he ate four or fewer there would not have been a unique solution.
Hi Dale, what are your thoughts on this?
It is based on the stipulation
"...by only asking questions that they didn't know the answers to."

Alonso asks "Bert, did you eat more apples than I did?"

Alonso can only ask this question not knowing the answer only if he did not eat more than 4 apples. Of the 11 apples, each ate at least 1, so 7 apples remain to be accounted for. If Alonzo ate 5 apples, the most anyone else could had eaten would be 4.
So Alonso ate no more than 4 apples. Everyone else now knows this.

Bert responds "I don't know"

Bert knows at most Alonso ate 4 apples. To reply that he does not know means Bert did not eat 5 apples (that is more, so reply would be"yes") or 4 apples (that is a tie, so reply would be "no"). Bert ate no more than 3 apples. Everyone else now knows this, too.

Bert asks George, "Did you eat more apples than I did?"

George knows at most Bert ate 3 apples.

George responds "I don't know"

To reply that he does not know means George did not eat more than 2 apples. Everyone else now knows this, too.

Kurt, knowing the two unique possibilities...

Alonso Bert George Kurt
4 3 2 2
3 2 1 5

...Kurt knows he either ate 2 or 5 apples, and then knows how many the others ate.

Kurt suddenly cries "Aha" ...
 
  • Informative
Likes   Reactions: Dale
That is interesting because there isn't a unique solution, but whatever solution it is, he knows. Actually, wouldn't all four say "Aha" at the same time?
 
Dale said:
That is interesting because there isn't a unique solution, but whatever solution it is, he knows. Actually, wouldn't all four say "Aha" at the same time?
Thinking about the "Aha" question has made me believe Kurt is the first to know unless George ate 2 apples, then George is the first to know!

Alonso's question reveals he either ate 1, 2, 3, or 4 apples
Bert's reply reveals he either ate 1, 2, or 3 apples
George's reply reveals he either ate 1 or 2 apples
The possible solutions known to all at that point are:

Alonso Bert George Kurt
4 3 2 2
4 3 1 3
4 2 1 4
3 2 1 5

The sequence of replies requires a strictly monotonic descending number of apples prefix for the solutions. George knows how many he ate, so if he ate 2, then he says "Aha" first because Kurt's values (2, 3, 4, 5) are unique across the four solutions.
 
  • Like
Likes   Reactions: Dale
bahamagreen said:
Thinking about the "Aha" question has made me believe Kurt is the first to know unless George ate 2 apples, then George is the first to know!

Alonso's question reveals he either ate 1, 2, 3, or 4 apples
Bert's reply reveals he either ate 1, 2, or 3 apples
George's reply reveals he either ate 1 or 2 apples
The possible solutions known to all at that point are:

Alonso Bert George Kurt
4 3 2 2
4 3 1 3
4 2 1 4
3 2 1 5

The sequence of replies requires a strictly monotonic descending number of apples prefix for the solutions. George knows how many he ate, so if he ate 2, then he says "Aha" first because Kurt's values (2, 3, 4, 5) are unique across the four solutions.
I don't agree with this. If Bert ate only 1 apple he would have answered no, so Bert ate 2,3 or 4 apples. If George ate only 2 apples, then he would have replied no. So, George ate 3 or 4.

At this point, none of Alonso, Bert or George can conclude anything. The status is:

A: 1,2,3 or 4
B: 2,3 or 4
G: 3 or 4

Which means they ate 6 apples or more between them. Unless Kurt ate 5, there is no unique solution. Only if Kurt ate 5 can he solve the problem.
 
Last edited:
  • Like
Likes   Reactions: Dale
  • #10
PeroK said:
I don't agree with this. If Bert ate only 1 apple he would have answered no, so Bert ate 2,3 or 4 apples. If George ate on 2 apples, then he would have replied no. So, George ate 3 or 4.

At this point, none of Alonso, Bert or George can conclude anything. The status is:

A: 1,2,3 or 4
B: 2,3 or 4
G: 3 or 4

Which means they are 6 apples or more between them. Unless Kurt ate 5, there is no unique solution. Only if Kurt ate 5 can he solve the problem.
You're right... I see 20 coherent solutions that follow the replies and sum to 11.
Only if Kurt ate 5 will present a unique solution...

A B G K
========
1 2 3 5 <------- unique solution for Kurt
1 2 4 4
1 3 3 4
1 3 4 3
1 4 3 3
1 4 4 2
2 2 3 4
2 2 4 3
2 3 3 3
2 3 4 2
2 4 3 2
2 4 4 1
3 2 3 3
3 2 4 2
3 3 3 2
3 3 4 1
3 4 3 1
4 2 3 2
4 2 4 1
4 3 3 1
 
  • Like
Likes   Reactions: Dale

Similar threads

  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K