Low-noise Amplifier for a sensitive radio receiver

  • Thread starter Thread starter WonderNomad
  • Start date Start date
  • Tags Tags
    Transistor
AI Thread Summary
When designing a low-noise amplifier (LNA) for a sensitive radio receiver, key noise sources to consider include thermal noise, shot noise, and flicker noise at the transistor level. Different LNA topologies, such as common-source, common-gate, and common-drain with inductive degeneration, significantly affect the overall noise figure and gain. Trade-offs in optimizing these parameters involve balancing noise performance with gain and stability. The discussion also highlights the importance of isolating radio circuits on PCBAs to prevent noise coupling, particularly when digital electronics are present. Understanding receiver sensitivity and employing techniques like "Star Grounding" can enhance the design's effectiveness.
WonderNomad
Messages
1
Reaction score
0
I'm designing a low-noise amplifier (LNA) for a sensitive radio receiver. What are the key noise sources I need to consider at the transistor level (e.g., thermal noise, shot noise, flicker noise)? How do different LNA topologies (e.g., common-source, common-gate, common-drain with inductive degeneration) impact the overall noise figure and gain? What are the trade-offs involved in optimizing these parameters?
 
Engineering news on Phys.org
In addition to the buy-vs-build question asked by @Baluncore -- do you have experience designing PCBAs with sensitive radio circuits? What is the application? Will there be digital electronics on the same PCBA? It is *extremely* important to isolate different parts of radio circuits on PCBAs to avoid coupling of noise between sections via shared impedances (like power supply and ground impedance). Are you familiar with techniques such as "Star Grounding" to achieve such isolation?

Also, what level of receiver sensitivity (in dBm) are you shooting for? https://www.repeater-builder.com/tech-info/measuring-sensitivity/measuring-sensitivity.html
 
I was wondering why you have chosen inductive degeneration for common source operation?
 
It’s all about matching the source impedance to the transistor input impedance that optimizes its noise figure. Pay attention to the Smith chart noise figure circles on the device data sheet.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top