Massaad's question via email about Laplace Transforms

In summary, the solution to the initial value problem using Laplace Transforms is $\displaystyle y\left( t \right) = \left[ 21 - 3\,\mathrm{e}^{6\,\left( t - 6 \right) } - 18\,\mathrm{e}^{-\left( t - 6 \right) } \right] \, H\left( t - 6 \right) - 5\,\mathrm{e}^{-t}$.
  • #1
Prove It
Gold Member
MHB
1,465
24
$\displaystyle y\left( t \right)$ satisfies the initial value problem:

$\displaystyle \frac{\mathrm{d}^2y}{\mathrm{d}x^2} - 5\,\frac{\mathrm{d}y}{\mathrm{d}t} - 6\,y = -126\,H\left( t - 6 \right) , \quad y\left( 0 \right) = -5, \,\, y'\left( 0 \right) = 5$

Find the solution to the initial value problem using Laplace Transforms.

Taking the Laplace Transform of the equation gives

$\displaystyle \begin{align*} s^2\,Y\left( s \right) - s\,y\left( 0 \right) - y'\left( 0 \right) - 5\left[ s\,Y\left( s \right) - y\left( 0 \right) \right] - 6\,Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
s^2\,Y\left( s \right) - s\left( -5 \right) - 5 - 5 \left[ s\,Y\left( s \right) - \left( -5 \right) \right] - 6\,Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
s^2\,Y\left( s \right) + 5\,s - 5 - 5\,s\,Y\left( s \right) - 25 - 6\,Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
\left( s^2 - 5\,s - 6 \right) Y\left( s \right) + 5\,s - 30 &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
\left( s - 6 \right) \left( s + 1 \right) Y\left( s \right) + 5 \left( s - 6 \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
\left( s + 1 \right) Y\left( s \right) + 5 &= -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) } \\
\left( s + 1 \right) Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) } - 5 \\
Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) \left( s + 1 \right) } - \frac{5}{s + 1}\end{align*}$

The second term is easy to find the inverse transform of: $\displaystyle \mathcal{L}^{-1}\,\left\{ \frac{5}{s + 1} \right\} = 5\,\mathrm{e}^{-t} $.

For the first term, due to the exponential function, it suggests a second shift: $\displaystyle \mathcal{L}\,\left\{ f\left( t - a \right) \,H\left( t - a \right) \right\} = \mathrm{e}^{-a\,s}\,F\left( s \right) $.

So in this case, we have $\displaystyle F\left( s \right) = -\frac{126}{s\left( s - 6 \right) \left( s + 1 \right) } $.

To find $\displaystyle f\left( t \right) $ we will need partial fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B}{s - 6} + \frac{C}{s + 1} &\equiv \frac{-126}{s\left( s - 6 \right) \left( s + 1 \right) } \\
A \left( s - 6 \right) \left( s + 1 \right) + B\,s\left( s + 1 \right) + C\,s \left( s - 6 \right) &\equiv -126 \end{align*} $

Let $\displaystyle s = 0 \implies -6\,A = -126 \implies A = 21$

Let $\displaystyle s = 6 \implies 42\,B = -126 \implies B = -3$

Let $\displaystyle s = -1 \implies 7\,C = -126 \implies C = -18 $

So

$\displaystyle \begin{align*} F\left( s \right) &= 21 \left( \frac{1}{s} \right) - 3 \left( \frac{1}{s - 6} \right) - 18 \left( \frac{1}{s + 1} \right) \\
f\left( t \right) &= 21 - 3\,\mathrm{e}^{6\,t} - 18\,\mathrm{e}^{-t} \end{align*}$

Thus $\displaystyle \mathcal{L}^{-1}\,\left\{ -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) \left( s + 1 \right) } \right\} = \left[ 21 - 3\,\mathrm{e}^{6\,\left( t - 6 \right) } - 18\,\mathrm{e}^{-\left( t - 6 \right) } \right]\,H\left( t - 6 \right) $ by the second shift theorem.

So now we can finally write the solution to the DE:

$\displaystyle y\left( t \right) = \left[ 21 - 3\,\mathrm{e}^{6\,\left( t - 6 \right) } - 18\,\mathrm{e}^{-\left( t - 6 \right) } \right] \, H\left( t - 6 \right) - 5\,\mathrm{e}^{-t}$
 
Mathematics news on Phys.org
  • #2


I hope this helps answer your question, Massaad. Let me know if you have any further questions or if anything is unclear. Keep up the good work with Laplace Transforms!
 

1. What are Laplace Transforms?

Laplace Transforms are mathematical operations that are used to convert functions from the time domain to the frequency domain. They are commonly used in engineering and physics to solve differential equations and analyze systems.

2. Why are Laplace Transforms useful?

Laplace Transforms are useful because they allow us to simplify complex differential equations into algebraic equations, which are easier to solve. They also help us to understand the behavior of systems over time and in different frequency ranges.

3. How do you perform a Laplace Transform?

To perform a Laplace Transform, you first need to have a function in the time domain. Then, you use a specific formula to transform that function into the frequency domain. The formula involves integration and may require some algebraic manipulation.

4. What are the applications of Laplace Transforms?

Laplace Transforms have many applications in engineering and physics. They are commonly used in control systems, signal processing, and circuit analysis. They can also be used to solve differential equations in mechanics, electromagnetics, and other fields.

5. Are there any limitations to Laplace Transforms?

While Laplace Transforms are a powerful tool, they do have some limitations. They can only be applied to functions that are defined for all positive values of time. They also cannot be used for functions with discontinuities or singularities. In addition, some functions may not have a Laplace Transform or may require advanced techniques to find their transform.

Similar threads

Replies
0
Views
9K
Replies
2
Views
10K
Replies
1
Views
10K
Replies
1
Views
9K
Replies
1
Views
10K
Replies
4
Views
10K
Replies
1
Views
10K
Replies
1
Views
9K
Replies
1
Views
10K
Replies
1
Views
9K
Back
Top