I'm having some trouble getting my head around the concept of multiple solutions of differential equations of higher order, that is the general solution to a linear homogeneous equation is a linear combination of constants and solutions like y(1)C1 + y(2)C2 +y(n)C(n) where N is the order of the differential equation. I understand that there will be multiple constants because even if it's in a roundabout way to solve the equation n integrations are neccessary, but for say a second order equation why will there be 2 solutions, and not one? Or three?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Need help understanding linear equations of higher order

**Physics Forums | Science Articles, Homework Help, Discussion**