A Need help with Rodrigues formula example in Riley, Hobson, Bence - Mathematical Methods for Physics and Engineering 3rd edition

  • A
  • Thread starter Thread starter vgarg
  • Start date Start date
  • Tags Tags
    Example Formulas
vgarg
Messages
11
Reaction score
0
Can someone please show/explain to me the steps between the 2 circled formulas on the attached page #582 from Riley, Hobson, Bence - Mathematical Methods for Physics and Engineering 3rd edition.

Thank you!
 

Attachments

Physics news on Phys.org
We can write the recurrence relation as K_l = \frac{2l}{2l+1} K_{l-1}.
We get the formula on the left-hand side when we substitute K_{l-1} with K_{l-1} = \frac{2l-1}{2(l-1)+1} K_{l-1-1}.
We can repeat this process until we get to l = 1 and K_0 (because of the assumption just below the grey box).
The part most on the right of the circle below is a compact way to write this product.
 
Last edited:
Thank you!
Could you please explain where does the 2nd ## 2^l l! ## term in ## 2^l l! \frac{2^l l!}{(2l+1)!} 2 ## in the lower circle come from? It has two ## 2^l l! ## terms in the numerator.
 
Thank you!
Can someone else please try to explain this to me?
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...

Similar threads

Back
Top