MHB No. of 5 Digit Nos Divisible by 8 (With/Without Repetition)

  • Thread starter Thread starter juantheron
  • Start date Start date
Click For Summary
The discussion focuses on calculating the number of five-digit numbers divisible by 8 using specific digits. For five-digit numbers formed from the digits {1,2,3,4,5} without repetition, there are 10 valid combinations based on the last three digits. In contrast, for five-digit numbers formed from the digits {0,1,2,3,4,5} with repetition allowed, the total increases to 185 combinations due to the inclusion of zero and additional valid endings. The complexity arises from ensuring the leading digit is not zero while considering various possible endings. Overall, the calculations highlight the impact of digit repetition and inclusion on the total count of valid numbers.
juantheron
Messages
243
Reaction score
1
(1) Total no. of $5$ digit no. which is formed by Using the Digits $1,2,3,4,5$ and Divisible by $8$

(when repetition is not allowed)

(2) Total no. of $5$ digit no. which is formed by Using the Digits $0,1,2,3,4,5$ and Divisible by $8$

(when repetition is allowed)
 
Physics news on Phys.org
Hello, jacks!

(1) Total no. of 5-digit no. formed of the digits {1,2,3,4,5} and divisible by 8
(when repetition is not allowed)
A number is divisible by 8 if its rightmost 3-digit number is divisible by 8.

There are 5 such endings: .--152, --312, --352, --432, --512

The other two spaces can be filled in 2! ways.

Therefore, there are: .5(2!) = 10 such numbers.



(2) Total no. of 5-digit no. formed of digits {0,1,2,3,4,5} and divisible by 8
(when repetition is allowed)
If repetition is allowed, there are 7 more endings:
. . --112, --224, --232, --344, --424, --552, --544

The other two spaces can be filled in 52 ways.

Therefore, there are: 10 + 7(25) = 185 such numbers.
 
jacks said:
(1) Total no. of $5$ digit no. which is formed by Using the Digits $1,2,3,4,5$ and Divisible by $8$

(when repetition is not allowed)

(2) Total no. of $5$ digit no. which is formed by Using the Digits $0,1,2,3,4,5$ and Divisible by $8$

(when repetition is allowed)
I agree with soroban on (1). For (2), the situation is more complicated because the digit 0 is also allowed. The possible three-digit endings are $$E24,\,E32,\,E40,\,O04,\,O12,\,O20,\,O44,\,O52,$$ where $E$ stands for an even number (0,2 or 4) and $O$ stands for an odd number (1,3 or 5). That gives $3\times8=24$ possible endings. For each ending there are $5\times6=30$ choices for the first two digits (5 for the leading digit, which must not be 0, and 6 for the second digit).
 

Hello, everyone!

Silly me . . . I overlooked the zero in the second part. . *slap head*
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
1
Views
2K
Replies
4
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K