Noether's Theorem in the Presence of a Charged Operator

  • Context: Undergrad 
  • Thread starter Thread starter thatboi
  • Start date Start date
  • Tags Tags
    Noether's theorem
Click For Summary
SUMMARY

Noether's Theorem asserts that a system exhibiting U(1) symmetry possesses a conserved current, represented by the equation ##\partial_{\mu}j^{\mu} = 0##. In the presence of a local operator ##\mathcal{O}(x)## with charge ##q\in \mathbb{Z}##, the continuity equation modifies to ##\mathcal{O}(x)\partial_{\mu}j^{\mu}(x') = q\delta(x-x')\mathcal{O}(x)##. This relationship highlights the interaction between the operator and the conserved current, leading to the derivation of the Ward identity: ##\partial_{\mu}^{(x)} \left( T\left( j^{\mu}(x)\mathcal{O}(y)\right)\right) = - i q \delta^{4}(x - y) \mathcal{O}(y)##, which is crucial for understanding symmetries in quantum field theory.

PREREQUISITES
  • Understanding of U(1) symmetry in quantum field theory
  • Familiarity with Noether's Theorem and conserved currents
  • Knowledge of operator algebra in quantum mechanics
  • Experience with time-ordered products in quantum field theory
NEXT STEPS
  • Study the implications of Noether's Theorem in various physical systems
  • Explore the derivation and applications of Ward identities
  • Learn about the role of local operators in quantum field theory
  • Investigate the mathematical framework of operator products and their significance
USEFUL FOR

Researchers and students in theoretical physics, particularly those focusing on quantum field theory, symmetry principles, and the mathematical foundations of particle physics.

thatboi
Messages
130
Reaction score
20
I am trying to understand the following idea that I found from some notes: Generally, a system with U(1) symmetry will have a conserved current: ##\partial_{\mu}j^{\mu} = 0##. The notes then state that in the presence of a local operator ##\mathcal{O}(x)## with charge ##q\in \mathbb{Z}## under U(1), the continuity equation becomes: ##\mathcal{O}(x)\partial_{\mu}j^{\mu}(x') = q\delta(x-x')\mathcal{O}(x)##. I just wanted to better understand the intuition behind this equation. How can I derive this?
 
Physics news on Phys.org
thatboi said:
\mathcal{O}(x)\partial_{\mu}j^{\mu}(x') = q\delta(x-x')\mathcal{O}(x)
It is not clear what meaning one can associate with the product of operators on the left hand side.

I you have an exact symmetry, then the Noether current is conserved, i.e., \partial_{\mu}j^{\mu}(x) = 0, and its associated charge, Q = \int d^{3}x \ j^{0}(x), generates the correct infinitesimal symmetry transformation of local operators: \left[Q , \mathcal{O}(y)\right] = \delta \mathcal{O}(y) = - i q \mathcal{O}(y) , or \left[ j^{0}(x) , \mathcal{O}(y) \right] = -i q \delta^{3}(\vec{x} - \vec{y}) \mathcal{O}(y) . \ \ \ \ (1)

Now consider the following time-ordered product T\left( j^{\mu}(x)\mathcal{O}(y)\right) \equiv j^{\mu}(x)\mathcal{O}(y)\theta (x^{0} - y^{0}) + \mathcal{O}(y)j^{\mu}(x) \theta (y^{0} - x^{0}) . Differentiation gives you \frac{\partial}{\partial x^{\mu}} T\left(j^{\mu}(x)\mathcal{O}(y) \right) = T\left( \partial_{\mu}j^{\mu}(x) \mathcal{O}(y)\right) + \delta (x^{0} - y^{0}) \left[ j^{0}(x) , \mathcal{O}(y)\right] . If the symmetry is exact, then current conservation and eq(1) give you the following (Ward identity):

\partial_{\mu}^{(x)} \left( T\left( j^{\mu}(x)\mathcal{O}(y)\right)\right) = - i q \delta^{4}(x - y) \mathcal{O}(y).
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K