I Noether's Theorem in the Presence of a Charged Operator

  • I
  • Thread starter Thread starter thatboi
  • Start date Start date
  • Tags Tags
    Noether's theorem
thatboi
Messages
130
Reaction score
20
I am trying to understand the following idea that I found from some notes: Generally, a system with U(1) symmetry will have a conserved current: ##\partial_{\mu}j^{\mu} = 0##. The notes then state that in the presence of a local operator ##\mathcal{O}(x)## with charge ##q\in \mathbb{Z}## under U(1), the continuity equation becomes: ##\mathcal{O}(x)\partial_{\mu}j^{\mu}(x') = q\delta(x-x')\mathcal{O}(x)##. I just wanted to better understand the intuition behind this equation. How can I derive this?
 
Physics news on Phys.org
thatboi said:
\mathcal{O}(x)\partial_{\mu}j^{\mu}(x') = q\delta(x-x')\mathcal{O}(x)
It is not clear what meaning one can associate with the product of operators on the left hand side.

I you have an exact symmetry, then the Noether current is conserved, i.e., \partial_{\mu}j^{\mu}(x) = 0, and its associated charge, Q = \int d^{3}x \ j^{0}(x), generates the correct infinitesimal symmetry transformation of local operators: \left[Q , \mathcal{O}(y)\right] = \delta \mathcal{O}(y) = - i q \mathcal{O}(y) , or \left[ j^{0}(x) , \mathcal{O}(y) \right] = -i q \delta^{3}(\vec{x} - \vec{y}) \mathcal{O}(y) . \ \ \ \ (1)

Now consider the following time-ordered product T\left( j^{\mu}(x)\mathcal{O}(y)\right) \equiv j^{\mu}(x)\mathcal{O}(y)\theta (x^{0} - y^{0}) + \mathcal{O}(y)j^{\mu}(x) \theta (y^{0} - x^{0}) . Differentiation gives you \frac{\partial}{\partial x^{\mu}} T\left(j^{\mu}(x)\mathcal{O}(y) \right) = T\left( \partial_{\mu}j^{\mu}(x) \mathcal{O}(y)\right) + \delta (x^{0} - y^{0}) \left[ j^{0}(x) , \mathcal{O}(y)\right] . If the symmetry is exact, then current conservation and eq(1) give you the following (Ward identity):

\partial_{\mu}^{(x)} \left( T\left( j^{\mu}(x)\mathcal{O}(y)\right)\right) = - i q \delta^{4}(x - y) \mathcal{O}(y).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top