MHB Number of p element subsets whose sum is divisible by p

Click For Summary
The discussion focuses on finding the number of p-element subsets of the set S={1, 2, ..., 2p} whose sum is divisible by an odd prime p. An equivalence relation R is established on the set of p-element subsets, allowing for the classification of these subsets based on their sums modulo p. A claim is made that the sizes of equivalence classes are equal under certain conditions, and a specific case involving the class [K_0] is highlighted as needing further exploration. The thread references a solution from Ross Honsberger's book, which employs generating functions to derive the size of [K_0] and notes the lack of clarity on why it contains two extra elements compared to other classes. Overall, the discussion emphasizes the complexity of the problem and the various approaches to finding a solution.
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $S=\{ 1, 2, \ldots , 2p\}$, where $p$ is an odd prime. Find the number of $p$-element subsets of $S$ the sum of whose elements is divisible by $p$.Attempt.

Let $\mathcal{K}$ be the set of all the $p$ element subsets of $S$. Let $\sigma(K)$ denote the sum of the elements of a member $K$ of $\mathcal{K}$. Define a relation $R$ on $\mathcal{K}$ as: $ARB$ if $\sigma(A) \equiv \sigma(B) (\mod p)$, for $A,B \in \mathcal{K}$. Its clear that $R$ is an equivalence relation. Choose $K_0,K_1, \ldots , K_{p-1} \in \mathcal{K}$ such that $\sigma(K_i) \equiv i (\mod p)$. Let $[K_i]$ denote the equivalence class of $K_i$ under $R$.

Claim: $|[K_i]|=|[K_j]|$ whenever $2p>i,j>0$
Proof. Let $x \in \{ 1, \ldots , p-1\}$ be such that $ix \equiv j (\mod p)$ (Such an $x$ exists). If $x$ is odd put $y=x$ else put $y=p+x$. So in any case $y$ is odd and $0<y<2p$.
Now let $K_i = \{ a_1, \ldots , a_p \}$. Consider a set $K^{*}=\{ ya_1, \ldots , ya_p\}$, where each element of $K^{*}$ is reduced mod $2p$ if necessary. One can easily show that $ya_i$'s are all distinct, thus $K^{*} \in \mathcal{K}$. Also $\sigma(K^{*}) \equiv iy \equiv ix \equiv j (\mod p))$, thus $K^{*} \in [K_j]$. SO from each element of $[K_i]$ we can produce one element of $[K_j]$. Also, since $gcd(y,2p)=1$, it follows that two distinct elements of $[K_i]$ don't match to a same element of $[K_j]$. The claim follows.
To arrive at the required answer I just need to show that $|[K_0]|=|[K_1]|+2$. But here I am stuck.
 
Physics news on Phys.org
Unable to get anywhere with this, I did an internet search and found that this is a problem (an exceptionally difficult one) from the 1995 International Olympiad. There is a solution in a book by Ross Honsberger (Mathematical Chestnuts from Around the World, pp.220-223; if you search for the book, you will find it freely available online in DjVu format). The solution given there consists of a direct proof, using a generating function, that $|[K_0]| = \frac1p\Bigl\{{2p\choose p} + 2(p-1)\Bigr\}.$ It does not make use of your very elegant proof that all the other sets $[K_i]$ have the same size, and it gives no clue as to why $[K_0]$ should contain two extra elements.
 
Opalg said:
Unable to get anywhere with this, I did an internet search and found that this is a problem (an exceptionally difficult one) from the 1995 International Olympiad. There is a solution in a book by Ross Honsberger (Mathematical Chestnuts from Around the World, pp.220-223; if you search for the book, you will find it freely available online in DjVu format). The solution given there consists of a direct proof, using a generating function, that $|[K_0]| = \frac1p\Bigl\{{2p\choose p} + 2(p-1)\Bigr\}.$ It does not make use of your very elegant proof that all the other sets $[K_i]$ have the same size, and it gives no clue as to why $[K_0]$ should contain two extra elements.
Thank You Opalg. Although the proof given in Honsberger uses a totally different approach, I myself tried a generating function approach and failed. So I am happy to see a proof using generating functions.

Opalg said:
It does not make use of your very elegant proof that ...
*rubs eyes* Thank you so much for the compliment.
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
17
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K