- 1

- 0

Hi folks!

I'm trying to (numerically) find a steady-state solution for [tex]N_b[/tex] and [tex]N_w[/tex] in the following set of coupled DEs using the software package Matlab:

[tex]

\left{

\begin{array}{l}

\frac{\delta N_b}{\delta t} = P_b(N_b) - N_b \cdot \left( \frac{1}{\tau_b} - \frac{1}{\tau_c}D \right)\\

\frac{\delta N_w}{\delta t} = \frac{N_b}{\tau_c} - \frac{N_w}{\tau_w(N_w)} - P_w(N_w)

\end{array}

\right.

[/tex]

where [tex]\tau_b[/tex], [tex]\tau_c[/tex] and [tex]D[/tex] are constants. Which way would be the right one to go?

I'm trying to (numerically) find a steady-state solution for [tex]N_b[/tex] and [tex]N_w[/tex] in the following set of coupled DEs using the software package Matlab:

[tex]

\left{

\begin{array}{l}

\frac{\delta N_b}{\delta t} = P_b(N_b) - N_b \cdot \left( \frac{1}{\tau_b} - \frac{1}{\tau_c}D \right)\\

\frac{\delta N_w}{\delta t} = \frac{N_b}{\tau_c} - \frac{N_w}{\tau_w(N_w)} - P_w(N_w)

\end{array}

\right.

[/tex]

where [tex]\tau_b[/tex], [tex]\tau_c[/tex] and [tex]D[/tex] are constants. Which way would be the right one to go?

Last edited: