Obtain the check digits in this problem

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on calculating check digits for the integers 55382006 and 81372439 using a specific modular arithmetic method. For 55382006, the calculation yields a check digit of 7, while for 81372439, the check digit is determined to be 5. The calculations utilize a weighted sum of the digits followed by a modulo 10 operation to derive the check digits. This method ensures the integrity of the numbers by appending the correct check digits.

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with weighted sums in number theory
  • Basic knowledge of integer properties
  • Ability to perform arithmetic operations
NEXT STEPS
  • Research modular arithmetic applications in error detection
  • Learn about weighted sum techniques in checksum algorithms
  • Explore different methods for calculating check digits
  • Study the role of check digits in data integrity and validation
USEFUL FOR

Mathematicians, computer scientists, software developers, and anyone involved in data validation or error detection processes.

Math100
Messages
817
Reaction score
230
Homework Statement
Consider the eight-digit bank identification number ## a_{1}a_{2}...a_{8} ##, which is followed by a ninth check digit ## a_{9} ## chosen to satisfy the congruence
## a_{9}\equiv (7a_{1}+3a_{2}+9a_{3}+7a_{4}+3a_{5}+9a_{6}+7a_{7}+3a_{8})\pmod {10} ##.
Obtain the check digits that should be appended to the two numbers ## 55382006 ## and ## 81372439 ##.
Relevant Equations
None.
First, we consider the integer ## 55382006 ##.
Observe that
\begin{align*}
&a_{9}\equiv (5\cdot 7+5\cdot 3+3\cdot 9+8\cdot 7+2\cdot 3+0\cdot 9+0\cdot 7+6\cdot 3)\pmod {10}\\
&\equiv 157\pmod {10}\\
&\equiv 7\pmod {10}.\\
\end{align*}
Thus ## a_{9}=7 ##.
Next, we consider the integer ## 81372439 ##.
Observe that
\begin{align*}
&a_{9}\equiv (8\cdot 7+1\cdot 3+3\cdot 9+7\cdot 7+2\cdot 3+4\cdot 9+3\cdot 7+9\cdot 3)\pmod {10}\\
&\equiv 225\pmod {10}\\
&\equiv 5\pmod {10}.\\
\end{align*}
Thus ## a_{9}=5 ##.
Therefore, the check digits that should be appended to the two numbers ## 55382006 ## and ## 81372439 ## are ## 7 ## and ## 5 ##.
 
  • Like
Likes   Reactions: fresh_42
Physics news on Phys.org
Correct.
 
  • Like
Likes   Reactions: Math100

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
1K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K