One-to-One Function: Definition & Examples

Click For Summary
A one-to-one function, or injective function, is defined such that if F(x1) equals F(x2), then x1 must equal x2, ensuring distinct inputs map to distinct outputs. This means that no two different elements in the domain can produce the same element in the co-domain. An example provided illustrates that if f(x1) and f(x2) both equal 3, then x1 and x2 must both equal 1, demonstrating a lack of injectivity. The discussion also highlights that a function is not one-to-one if there exists distinct inputs x1 and x2 that yield the same output. Understanding these principles is crucial for grasping the concept of injective functions.
Nert
Messages
6
Reaction score
0
Hey I was reading Susanna Discrete book and I came across her definition of One-to-One function:

Let F be a function from a set X to a set Y. F is one-to-one (or injective) if, and only if, for all elements x1 and x2 in X,

if F(x1 ) = F(x2 ),then x1 = x2 ,
or, equivalently, if x1 ≠ x2 ,then F(x1) ≠ F(x2).

Symbolically,
F: X → Y is one-to-one ⇔ ∀x 1 ,x 2 ∈ X,if F(x1 ) = F(x2 ) then x1 = x2.

But I am not sure if I fully understand the definition. Here is my interpretation of the definition:

A function is said to be one-to-one if and only if,

if f(x1) and f(x2) are the same then x1=x2 ,

e.g if f(x1)=f(x2)=3, then
x1 = x2 = 1

Since, the co-domain 3 is being pointed by a two non-distinctive domain 1 then it said to be a one-to-one function.
 
Last edited:
Physics news on Phys.org
Nert said:
Hey I was reading Susanna Discrete book and I came across her definition of One-to-One function:

Let F be a function from a set X to a set Y. F is one-to-one (or injective) if, and only if, for all elements x1 and x2 in X,

if F(x1 ) = F(x2 ),then x1 = x2 ,
or, equivalently, if x1 ≠ x2 ,then F(x1) ≠ F(x2).

Symbolically,
F: X → Y is one-to-one ⇔ ∀x 1 ,x 2 ∈ X,if F(x1 ) = F(x2 ) then x1 = x2.

But I am not sure if I fully understand the definition. Here is my interpretation of the definition:

A function is said to be one-to-one if and only if,

if f(x1) and f(x2) are the same then x1=x2 ,

e.g if f(x1)=f(x2)=3, then
x1 = x2 = 1

Since, the co-domain 3 is being pointed by a single domain 1 then it said to be a one-to-one function.

Yes, I think you've got it. You can also think of what happens iff f is not 1-1:

##f \ \ is \ \ not \ \ 1-1 \ \ iff \ \ \exists x_1 \ne x_2 \ \ with \ \ f(x_1) = f(x_2)##

That's a useful way to look at it as well.
 
Yes! Thank you
 
The standard _A " operator" maps a Null Hypothesis Ho into a decision set { Do not reject:=1 and reject :=0}. In this sense ( HA)_A , makes no sense. Since H0, HA aren't exhaustive, can we find an alternative operator, _A' , so that ( H_A)_A' makes sense? Isn't Pearson Neyman related to this? Hope I'm making sense. Edit: I was motivated by a superficial similarity of the idea with double transposition of matrices M, with ## (M^{T})^{T}=M##, and just wanted to see if it made sense to talk...

Similar threads

  • · Replies 54 ·
2
Replies
54
Views
6K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K