Optimal thin absorber of electromagnetic energy

AI Thread Summary
The discussion centers on deriving Equation (10) from Equations (8) and (9) in a paper related to microwave absorption. A participant suggests that the complex component of k_2 in Equation (8) is negligible, allowing for Equation (10) to be treated as real. Further analysis shows that both k_2 and the ratio of impedances are small, enabling a series expansion to simplify the derivation. The final expression for the impedance Z_{1-2} is reformulated in terms of the metal's conductivity and skin depth. The conversation highlights the complexities involved in understanding electromagnetic energy absorption in materials.
Leo2024
Messages
1
Reaction score
0
Hi, I am a material engineer and have a question about a formula derivation relative to microwave absorption. I really cannot figure it out after days of trying. This should be simple for a specialist.

In this attached paper, how could one derive Eq(10) based on Eq (8) and (9)? Is k_2 in Eq (8) a complex number?
screenshot.jpg

Source: https://www.researchgate.net/profil...of-the-permeable-base-transistor.pdf#page=168
 
Engineering news on Phys.org
Thread closed temporarily for Moderation...
 
Thread is reopened provisionally...
 
I read eq. (9), and its surrounding text, as saying that the complex part is so small that that it can be ignored - leading to eq. (10) being real (with the complex part negligible).

Caveat: Not an expert in the field, just my interpretation of the text and equations.

Cheers,
Tom
 
Leo2024 said:
In this attached paper, how could one derive Eq(10) based on Eq (8) and (9)? Is k_2 in Eq (8) a complex number?
You can rewrite eq.(8) of the paper in the form:$$Z_{1-2}\left(d\right)=\eta_{0}\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)\left(\frac{1-j\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)\tan\left(k_{2}d\right)}{\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)-j\tan\left(k_{2}d\right)}\right)\tag{1}$$You already know from eq.(9) that ##\left|k_{2}d\right|\ll1##, but it's also true that ##\left|\eta_{\mathrm{met}}/\eta_{0}\right|\ll1## because the impedance of a good-conducting metal is very small. So we can expand (1) to lowest order in the two small quantities to get:$$Z_{1-2}\left(d\right)\approx\frac{\eta_{0}\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)}{\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)-jk_{2}d}=\frac{\eta_{0}\,\eta_{\mathrm{met}}}{\eta_{\mathrm{met}}-j\eta_{0}\,k_{2}d}\tag{2}$$Now rewrite eq.(6) and the definition of impedance, in terms of the metal's conductivity ##\sigma_{\mathrm{met}}## and skin-depth ##\delta_{s}\equiv\sqrt{\frac{2}{\omega\mu\sigma_{\mathrm{met}}}}##:$$k_{2}=\frac{1+j}{\delta_{s}},\;\eta_{\mathrm{met}}\equiv\frac{\omega\mu}{k_{2}}=\frac{1-j}{\sigma_{\mathrm{met}}\,\delta_{s}}\tag{3a,b}$$Finally, insert this into (2) to yield:$$Z_{1-2}\left(d\right)\approx\frac{\eta_{0}}{1+\eta_{0}\,\sigma_{\mathrm{met}}d}=\frac{R_{S}\,\eta_{0}}{R_{S}+\eta_{0}}\tag{4}$$where ##R_{S}\equiv1/\left(\sigma_{\mathrm{met}}d\right)##.

(Edited to include absolute-value signs in the inequalities.)
 
Last edited:
  • Like
Likes Leo2024 and Delta Prime
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top