Optimal thin absorber of electromagnetic energy

Click For Summary
The discussion centers on deriving Equation (10) from Equations (8) and (9) in a paper related to microwave absorption. A participant suggests that the complex component of k_2 in Equation (8) is negligible, allowing for Equation (10) to be treated as real. Further analysis shows that both k_2 and the ratio of impedances are small, enabling a series expansion to simplify the derivation. The final expression for the impedance Z_{1-2} is reformulated in terms of the metal's conductivity and skin depth. The conversation highlights the complexities involved in understanding electromagnetic energy absorption in materials.
Leo2024
Messages
1
Reaction score
0
Hi, I am a material engineer and have a question about a formula derivation relative to microwave absorption. I really cannot figure it out after days of trying. This should be simple for a specialist.

In this attached paper, how could one derive Eq(10) based on Eq (8) and (9)? Is k_2 in Eq (8) a complex number?
screenshot.jpg

Source: https://www.researchgate.net/profil...of-the-permeable-base-transistor.pdf#page=168
 
Engineering news on Phys.org
Thread closed temporarily for Moderation...
 
Thread is reopened provisionally...
 
I read eq. (9), and its surrounding text, as saying that the complex part is so small that that it can be ignored - leading to eq. (10) being real (with the complex part negligible).

Caveat: Not an expert in the field, just my interpretation of the text and equations.

Cheers,
Tom
 
Leo2024 said:
In this attached paper, how could one derive Eq(10) based on Eq (8) and (9)? Is k_2 in Eq (8) a complex number?
You can rewrite eq.(8) of the paper in the form:$$Z_{1-2}\left(d\right)=\eta_{0}\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)\left(\frac{1-j\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)\tan\left(k_{2}d\right)}{\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)-j\tan\left(k_{2}d\right)}\right)\tag{1}$$You already know from eq.(9) that ##\left|k_{2}d\right|\ll1##, but it's also true that ##\left|\eta_{\mathrm{met}}/\eta_{0}\right|\ll1## because the impedance of a good-conducting metal is very small. So we can expand (1) to lowest order in the two small quantities to get:$$Z_{1-2}\left(d\right)\approx\frac{\eta_{0}\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)}{\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)-jk_{2}d}=\frac{\eta_{0}\,\eta_{\mathrm{met}}}{\eta_{\mathrm{met}}-j\eta_{0}\,k_{2}d}\tag{2}$$Now rewrite eq.(6) and the definition of impedance, in terms of the metal's conductivity ##\sigma_{\mathrm{met}}## and skin-depth ##\delta_{s}\equiv\sqrt{\frac{2}{\omega\mu\sigma_{\mathrm{met}}}}##:$$k_{2}=\frac{1+j}{\delta_{s}},\;\eta_{\mathrm{met}}\equiv\frac{\omega\mu}{k_{2}}=\frac{1-j}{\sigma_{\mathrm{met}}\,\delta_{s}}\tag{3a,b}$$Finally, insert this into (2) to yield:$$Z_{1-2}\left(d\right)\approx\frac{\eta_{0}}{1+\eta_{0}\,\sigma_{\mathrm{met}}d}=\frac{R_{S}\,\eta_{0}}{R_{S}+\eta_{0}}\tag{4}$$where ##R_{S}\equiv1/\left(\sigma_{\mathrm{met}}d\right)##.

(Edited to include absolute-value signs in the inequalities.)
 
Last edited:
  • Like
Likes Leo2024 and Delta Prime
I am trying to understand how transferring electric from the powerplant to my house is more effective using high voltage. The suggested explanation that the current is equal to the power supply divided by the voltage, and hence higher voltage leads to lower current and as a result to a lower power loss on the conductives is very confusing me. I know that the current is determined by the voltage and the resistance, and not by a power capability - which defines a limit to the allowable...