Optimal thin absorber of electromagnetic energy

AI Thread Summary
The discussion centers on deriving Equation (10) from Equations (8) and (9) in a paper related to microwave absorption. A participant suggests that the complex component of k_2 in Equation (8) is negligible, allowing for Equation (10) to be treated as real. Further analysis shows that both k_2 and the ratio of impedances are small, enabling a series expansion to simplify the derivation. The final expression for the impedance Z_{1-2} is reformulated in terms of the metal's conductivity and skin depth. The conversation highlights the complexities involved in understanding electromagnetic energy absorption in materials.
Leo2024
Messages
1
Reaction score
0
Hi, I am a material engineer and have a question about a formula derivation relative to microwave absorption. I really cannot figure it out after days of trying. This should be simple for a specialist.

In this attached paper, how could one derive Eq(10) based on Eq (8) and (9)? Is k_2 in Eq (8) a complex number?
screenshot.jpg

Source: https://www.researchgate.net/profil...of-the-permeable-base-transistor.pdf#page=168
 
Engineering news on Phys.org
Thread closed temporarily for Moderation...
 
Thread is reopened provisionally...
 
I read eq. (9), and its surrounding text, as saying that the complex part is so small that that it can be ignored - leading to eq. (10) being real (with the complex part negligible).

Caveat: Not an expert in the field, just my interpretation of the text and equations.

Cheers,
Tom
 
Leo2024 said:
In this attached paper, how could one derive Eq(10) based on Eq (8) and (9)? Is k_2 in Eq (8) a complex number?
You can rewrite eq.(8) of the paper in the form:$$Z_{1-2}\left(d\right)=\eta_{0}\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)\left(\frac{1-j\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)\tan\left(k_{2}d\right)}{\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)-j\tan\left(k_{2}d\right)}\right)\tag{1}$$You already know from eq.(9) that ##\left|k_{2}d\right|\ll1##, but it's also true that ##\left|\eta_{\mathrm{met}}/\eta_{0}\right|\ll1## because the impedance of a good-conducting metal is very small. So we can expand (1) to lowest order in the two small quantities to get:$$Z_{1-2}\left(d\right)\approx\frac{\eta_{0}\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)}{\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)-jk_{2}d}=\frac{\eta_{0}\,\eta_{\mathrm{met}}}{\eta_{\mathrm{met}}-j\eta_{0}\,k_{2}d}\tag{2}$$Now rewrite eq.(6) and the definition of impedance, in terms of the metal's conductivity ##\sigma_{\mathrm{met}}## and skin-depth ##\delta_{s}\equiv\sqrt{\frac{2}{\omega\mu\sigma_{\mathrm{met}}}}##:$$k_{2}=\frac{1+j}{\delta_{s}},\;\eta_{\mathrm{met}}\equiv\frac{\omega\mu}{k_{2}}=\frac{1-j}{\sigma_{\mathrm{met}}\,\delta_{s}}\tag{3a,b}$$Finally, insert this into (2) to yield:$$Z_{1-2}\left(d\right)\approx\frac{\eta_{0}}{1+\eta_{0}\,\sigma_{\mathrm{met}}d}=\frac{R_{S}\,\eta_{0}}{R_{S}+\eta_{0}}\tag{4}$$where ##R_{S}\equiv1/\left(\sigma_{\mathrm{met}}d\right)##.

(Edited to include absolute-value signs in the inequalities.)
 
Last edited:
  • Like
Likes Leo2024 and Delta Prime
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top