Optimal thin absorber of electromagnetic energy

Click For Summary
SUMMARY

The forum discussion focuses on deriving Equation (10) from Equations (8) and (9) in the context of microwave absorption. The user, Tom, seeks clarification on whether k_2 in Equation (8) is a complex number. The consensus is that the complex part of k_2 can be neglected due to its small magnitude, leading to a real value in Equation (10). The derivation involves expanding the impedance formula Z_{1-2}(d) and considering the properties of good-conducting metals.

PREREQUISITES
  • Understanding of microwave absorption principles
  • Familiarity with complex numbers in physics
  • Knowledge of impedance and its derivation
  • Basic concepts of material conductivity and skin depth
NEXT STEPS
  • Study the derivation of impedance in microwave engineering
  • Learn about the properties of good-conducting metals and their impact on electromagnetic absorption
  • Explore the concept of skin depth in conductive materials
  • Investigate the application of complex numbers in electromagnetic theory
USEFUL FOR

Material engineers, physicists, and researchers focused on microwave absorption and electromagnetic energy optimization will benefit from this discussion.

Leo2024
Messages
1
Reaction score
0
Hi, I am a material engineer and have a question about a formula derivation relative to microwave absorption. I really cannot figure it out after days of trying. This should be simple for a specialist.

In this attached paper, how could one derive Eq(10) based on Eq (8) and (9)? Is k_2 in Eq (8) a complex number?
screenshot.jpg

Source: https://www.researchgate.net/profil...of-the-permeable-base-transistor.pdf#page=168
 
Engineering news on Phys.org
Thread closed temporarily for Moderation...
 
Thread is reopened provisionally...
 
I read eq. (9), and its surrounding text, as saying that the complex part is so small that that it can be ignored - leading to eq. (10) being real (with the complex part negligible).

Caveat: Not an expert in the field, just my interpretation of the text and equations.

Cheers,
Tom
 
Leo2024 said:
In this attached paper, how could one derive Eq(10) based on Eq (8) and (9)? Is k_2 in Eq (8) a complex number?
You can rewrite eq.(8) of the paper in the form:$$Z_{1-2}\left(d\right)=\eta_{0}\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)\left(\frac{1-j\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)\tan\left(k_{2}d\right)}{\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)-j\tan\left(k_{2}d\right)}\right)\tag{1}$$You already know from eq.(9) that ##\left|k_{2}d\right|\ll1##, but it's also true that ##\left|\eta_{\mathrm{met}}/\eta_{0}\right|\ll1## because the impedance of a good-conducting metal is very small. So we can expand (1) to lowest order in the two small quantities to get:$$Z_{1-2}\left(d\right)\approx\frac{\eta_{0}\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)}{\left(\frac{\eta_{\mathrm{met}}}{\eta_{0}}\right)-jk_{2}d}=\frac{\eta_{0}\,\eta_{\mathrm{met}}}{\eta_{\mathrm{met}}-j\eta_{0}\,k_{2}d}\tag{2}$$Now rewrite eq.(6) and the definition of impedance, in terms of the metal's conductivity ##\sigma_{\mathrm{met}}## and skin-depth ##\delta_{s}\equiv\sqrt{\frac{2}{\omega\mu\sigma_{\mathrm{met}}}}##:$$k_{2}=\frac{1+j}{\delta_{s}},\;\eta_{\mathrm{met}}\equiv\frac{\omega\mu}{k_{2}}=\frac{1-j}{\sigma_{\mathrm{met}}\,\delta_{s}}\tag{3a,b}$$Finally, insert this into (2) to yield:$$Z_{1-2}\left(d\right)\approx\frac{\eta_{0}}{1+\eta_{0}\,\sigma_{\mathrm{met}}d}=\frac{R_{S}\,\eta_{0}}{R_{S}+\eta_{0}}\tag{4}$$where ##R_{S}\equiv1/\left(\sigma_{\mathrm{met}}d\right)##.

(Edited to include absolute-value signs in the inequalities.)
 
Last edited:
  • Like
Likes   Reactions: Leo2024 and Delta Prime