I Parity Selection Rules: I'm Confused

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
I'm confused by the discussion in section §30 (Parity of a state), page 98 of Landau's QM. The functions ##\psi_u## and ##\psi_g## are odd an even states respectively. If ##f## is a true scalar, then it should remain unchanged by inversion of the co-ordinates. Writing ##q' = -q##, then its matrix element at position ##(u,g)## is\begin{align*}
f_{ug} = \int \psi_u^*(q) \hat{f}(q) \psi_g(q) dq =-\int [-\psi_u^*(q')] \hat{f}(q') \psi_g(q') dq' = \int \psi_u^*(q') \hat{f}(q') \psi_g(q') dq'
\end{align*}however it is written in the text that ##f_{ug} = -f_{ug}##. What did I mis-understand?
 
Physics news on Phys.org
What is ##q##? What are the limits of all those integrals?
 
  • Like
Likes ergospherical
Gaussian97 said:
What is ##q##? What are the limits of all those integrals?
Oh yes, thanks, there should be an extra minus sign due to inverting the limits of the third integral.
 
ergospherical said:
I'm confused by the discussion in section §30 (Parity of a state), page 98 of Landau's QM. The functions ##\psi_u## and ##\psi_g## are odd an even states respectively. If ##f## is a true scalar, then it should remain unchanged by inversion of the co-ordinates. Writing ##q' = -q##, then its matrix element at position ##(u,g)## is\begin{align*}
f_{ug} = \int \psi_u^*(q) \hat{f}(q) \psi_g(q) dq =-\int [-\psi_u^*(q')] \hat{f}(q') \psi_g(q') dq' = \int \psi_u^*(q') \hat{f}(q') \psi_g(q') dq'
\end{align*}however it is written in the text that ##f_{ug} = -f_{ug}##. What did I mis-understand?
Where does the additional ##-## sign after the 2nd equality sign come from? This should be absent since ##f(q)=f(-q)## by assumption, if I understand right what you mean by "true scalar", i.e., a scalar under rotations AND parity.
 
ergospherical said:
Oh yes, thanks, there should be an extra minus sign due to inverting the limits of the third integral.
No, why? You have
$$\mathrm{d}^3 q' =\left | \mathrm{det} \frac{\partial(q')}{\partial q} \right| \mathrm{d}^3 q = |-1| \mathrm{d}^3 q=\mathrm{d}^3 q.$$
 
I have taken ##dq’ = -dq##, but in changing variables must also reverse the limits of the integral
\begin{align*}
f_{ug} = \int_{-\infty}^{\infty} \psi_u^*(q) \hat{f}(q) \psi_g(q) dq &=-\int_{\infty}^{-\infty} [-\psi_u^*(q')] \hat{f}(q') \psi_g(q') dq' \\
&= \int_{\infty}^{-\infty} \psi_u^*(q') \hat{f}(q') \psi_g(q') dq' \\
&= -f_{ug}
\end{align*}
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top