I Parity Selection Rules: I'm Confused

Click For Summary
The discussion centers on the confusion regarding the parity selection rules in quantum mechanics as described in Landau's QM. The key point of contention is the interpretation of the matrix element f_{ug} and the implications of parity transformation on scalar functions. Participants clarify that when changing variables in integrals, the limits must be reversed, which introduces an additional minus sign. There is agreement that the function f should remain unchanged under inversion, but the integration limits and the treatment of odd and even states lead to the conclusion that f_{ug} equals -f_{ug}. This highlights the complexities involved in understanding parity in quantum mechanics.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
I'm confused by the discussion in section §30 (Parity of a state), page 98 of Landau's QM. The functions ##\psi_u## and ##\psi_g## are odd an even states respectively. If ##f## is a true scalar, then it should remain unchanged by inversion of the co-ordinates. Writing ##q' = -q##, then its matrix element at position ##(u,g)## is\begin{align*}
f_{ug} = \int \psi_u^*(q) \hat{f}(q) \psi_g(q) dq =-\int [-\psi_u^*(q')] \hat{f}(q') \psi_g(q') dq' = \int \psi_u^*(q') \hat{f}(q') \psi_g(q') dq'
\end{align*}however it is written in the text that ##f_{ug} = -f_{ug}##. What did I mis-understand?
 
Physics news on Phys.org
What is ##q##? What are the limits of all those integrals?
 
  • Like
Likes ergospherical
Gaussian97 said:
What is ##q##? What are the limits of all those integrals?
Oh yes, thanks, there should be an extra minus sign due to inverting the limits of the third integral.
 
ergospherical said:
I'm confused by the discussion in section §30 (Parity of a state), page 98 of Landau's QM. The functions ##\psi_u## and ##\psi_g## are odd an even states respectively. If ##f## is a true scalar, then it should remain unchanged by inversion of the co-ordinates. Writing ##q' = -q##, then its matrix element at position ##(u,g)## is\begin{align*}
f_{ug} = \int \psi_u^*(q) \hat{f}(q) \psi_g(q) dq =-\int [-\psi_u^*(q')] \hat{f}(q') \psi_g(q') dq' = \int \psi_u^*(q') \hat{f}(q') \psi_g(q') dq'
\end{align*}however it is written in the text that ##f_{ug} = -f_{ug}##. What did I mis-understand?
Where does the additional ##-## sign after the 2nd equality sign come from? This should be absent since ##f(q)=f(-q)## by assumption, if I understand right what you mean by "true scalar", i.e., a scalar under rotations AND parity.
 
ergospherical said:
Oh yes, thanks, there should be an extra minus sign due to inverting the limits of the third integral.
No, why? You have
$$\mathrm{d}^3 q' =\left | \mathrm{det} \frac{\partial(q')}{\partial q} \right| \mathrm{d}^3 q = |-1| \mathrm{d}^3 q=\mathrm{d}^3 q.$$
 
I have taken ##dq’ = -dq##, but in changing variables must also reverse the limits of the integral
\begin{align*}
f_{ug} = \int_{-\infty}^{\infty} \psi_u^*(q) \hat{f}(q) \psi_g(q) dq &=-\int_{\infty}^{-\infty} [-\psi_u^*(q')] \hat{f}(q') \psi_g(q') dq' \\
&= \int_{\infty}^{-\infty} \psi_u^*(q') \hat{f}(q') \psi_g(q') dq' \\
&= -f_{ug}
\end{align*}
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...